0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

コンビネータ論理Extra practice 2.35(a)

Last updated at Posted at 2025-05-19

コンビネータ論理の問題。

Lambda-Calculus and Combinators: An Introduction
Hindley & Seldin より

Extra practice 2.35(a)

次のコンビネータを簡約化せよ。
ただし、
$BXY\ \triangleright_\omega\ X(YZ) $
$CXYZ\ \triangleright_\omega\ XZY $
$WXY\ \triangleright_\omega\ XYY $

(i)

$KSuxyz$
$\equiv(KSu)xyz\equiv Sxyz\equiv xz(yz)$

(ii)

$S(Kx)(KIy)z$
$\equiv(Kx)z((KIy)z)\equiv x(Iz)\equiv xz$

(iii)

$CSIxy$
$\equiv(CSIx)y\equiv SxIy\equiv xy(Iy)\equiv xyy$

(iv)

$S(CI)xy$
$\equiv(CI)y(xy)\equiv CIy(xy)\equiv I(xy)y\equiv(xy)y\equiv xyy$

(v)

$B(BS)Bxyzu$
$\equiv(BS)(Bx)yzu
\equiv B\underline{S}(\underline{Bx})\underline{y}zu
\equiv S(\underline{(Bx)y})\underline{z}\ \underline{u}$
$\equiv(B\underline{x})\underline{y}\ \underline{u}(zu)
\equiv x(yu)(zu)$

(vi)

$BB(BB)uvwxy$
$\equiv B((BB)u)vwxy
\equiv (BB)u(vw)xy
\equiv B(u(vw))xy$
$\equiv (u(vw))(xy)$

(vii)

$B(BW(BC))(BB(BB))xyzu$
$\equiv(BW(BC))((BB(BB))x) yzu$
$\equiv(BW(BC))(B(BBx)) y zu$ by $(BB(BB))x=B(BBx)$
$\equiv W((BC)(B(BBx))) y zu$
$\equiv ((BC)(B(BBx))) y y zu$
$\equiv C((B(BBx)) y) y zu$
$\equiv ((B(BBx))y) zy u$
$\equiv (BBx)(yz) yu$
$\equiv B(x(yz)) yu$
$\equiv (x(yz)) (yu)\equiv x(yz) (yu)$

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?