2
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

【Python】データサイエンス100本ノック(構造化データ加工編) 017 解説

Last updated at Posted at 2020-07-31
  • データサイエンス100本ノックをやりきる会を作りました🎉
  • こちらのSlack招待URLからご参加ください!!
  • ぜひ一緒に励まし合いながら、データサイエンス100本ノックをやり切りたいと思っています!

##Youtube
動画解説もしています。

##問題
P-017: 顧客データフレーム(df_customer)を生年月日(birth_day)で高齢順にソートし、先頭10件を全項目表示せよ。

##解答

コード
df_customer.sort_values('birth_day', ascending=True).head(10)

##出力

customer_id customer_name gender_cd gender birth_day age postal_cd address application_store_cd application_date status_cd
18817 CS003813000014 村山 菜々美 1 女性 1928-11-26 90 182-0007 東京都調布市菊野台********** S13003 20160214 0-00000000-0
12328 CS026813000004 吉村 朝陽 1 女性 1928-12-14 90 251-0043 神奈川県藤沢市辻堂元町********** S14026 20150723 0-00000000-0
15682 CS018811000003 熊沢 美里 1 女性 1929-01-07 90 204-0004 東京都清瀬市野塩********** S13018 20150403 0-00000000-0
15302 CS027803000004 内村 拓郎 0 男性 1929-01-12 90 251-0031 神奈川県藤沢市鵠沼藤が谷********** S14027 20151227 0-00000000-0
1681 CS013801000003 天野 拓郎 0 男性 1929-01-15 90 274-0824 千葉県船橋市前原東********** S12013 20160120 0-00000000-0
7511 CS001814000022 鶴田 里穂 1 女性 1929-01-28 90 144-0045 東京都大田区南六郷********** S13001 20161012 A-20090415-7
2378 CS016815000002 山元 美紀 1 女性 1929-02-22 90 184-0005 東京都小金井市桜町********** S13016 20150629 C-20090923-C
4680 CS009815000003 中田 里穂 1 女性 1929-04-08 89 154-0014 東京都世田谷区新町********** S13009 20150421 D-20091021-E
16070 CS005813000015 金谷 恵梨香 1 女性 1929-04-09 89 165-0032 東京都中野区鷺宮********** S13005 20150506 0-00000000-0
6305 CS012813000013 宇野 南朋 1 女性 1929-04-09 89 231-0806 神奈川県横浜市中区本牧町********** S14012 20150712 0-00000000-0

##解説
・PandasのDataFrame/Seriesにて、データをソートする方法です。
・情報を昇順あるいは降順に並べ替えて見たい時に使用します。
'sort_values(<文字列>)'は、指定した文字列を昇順あるいは降順に並べ替える関数です。
・今回の場合、birth_day を昇順に並べ替える(=高齢順に並べ替える)ため、'sort_values('birth_day',ascending=True)'と記載しています。

※sort_valuesの参考記事はこちらです。

2
3
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
3

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?