0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

【Python】データサイエンス100本ノック(構造化データ加工編) 018 解説

Last updated at Posted at 2020-08-01
  • データサイエンス100本ノックをやりきる会を作りました🎉
  • こちらのSlack招待URLからご参加ください!!
  • ぜひ一緒に励まし合いながら、データサイエンス100本ノックをやり切りたいと思っています!

##Youtube
動画解説もしています。

##問題
P-018: 顧客データフレーム(df_customer)を生年月日(birth_day)で若い順にソートし、先頭10件を全項目表示せよ。

##解答

コード
df_customer.sort_values('birth_day', ascending=False).head(10)

##出力

customer_id customer_name gender_cd gender birth_day age postal_cd address application_store_cd application_date status_cd
15639 CS035114000004 大村 美里 1 女性 2007-11-25 11 156-0053 東京都世田谷区桜********** S13035 20150619 6-20091205-6
7468 CS022103000002 福山 はじめ 9 不明 2007-10-02 11 249-0006 神奈川県逗子市逗子********** S14022 20160909 0-00000000-0
10745 CS002113000009 柴田 真悠子 1 女性 2007-09-17 11 184-0014 東京都小金井市貫井南町********** S13002 20160304 0-00000000-0
19811 CS004115000014 松井 京子 1 女性 2007-08-09 11 165-0031 東京都中野区上鷺宮********** S13004 20161120 1-20081231-1
7039 CS002114000010 山内 遥 1 女性 2007-06-03 11 184-0015 東京都小金井市貫井北町********** S13002 20160920 6-20100510-1
3670 CS025115000002 小柳 夏希 1 女性 2007-04-18 11 245-0018 神奈川県横浜市泉区上飯田町********** S14025 20160116 D-20100913-D
12493 CS002113000025 広末 まなみ 1 女性 2007-03-30 12 184-0015 東京都小金井市貫井北町********** S13002 20171030 0-00000000-0
15977 CS033112000003 長野 美紀 1 女性 2007-03-22 12 245-0051 神奈川県横浜市戸塚区名瀬町********** S14033 20150606 0-00000000-0
5716 CS007115000006 福岡 瞬 1 女性 2007-03-10 12 285-0845 千葉県佐倉市西志津********** S12007 20151118 F-20101016-F
15097 CS014113000008 矢口 莉緒 1 女性 2007-03-05 12 260-0041 千葉県千葉市中央区東千葉********** S12014 20150622 3-20091108-6

##解説
・PandasのDataFrame/Seriesにて、データをソートする方法です。
・情報を昇順あるいは降順に並べ替えて見たい時に使用します。
'sort_values(<文字列>)'は、指定した文字列を昇順あるいは降順に並べ替える関数です。
・今回の場合、birth_day を降順に並べ替える(=若い順に並べ替える)ため、'sort_values('birth_day',ascending=False)'と記載しています。

※sort_valuesの参考記事はこちらです。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?