新年初日に物理をやるとこの一年の全ての授業で優上を取れるらしいので書いてみました1.相対論的電磁気に関する諸事実についてまとめます.また色々更新します(やる気も暇も全くありませんが笑).
$$
\renewcommand{\ds}[0]{\displaystyle}
\renewcommand{\bm}[1]{\boldsymbol{#1}}
\renewcommand{\fvec}[4]{\begin{pmatrix}#1\ #2\ #3\ #4\end{pmatrix}}
\renewcommand{\dif}[2]{\frac{\mathrm{d}#2}{\mathrm{d}#1}}
\renewcommand{\pdif}[2]{\frac{\partial #2}{\partial #1}}
$$
- 慣性系間相対速度:$\beta_\bm{v}=\ds\frac{\bm{v}}c$
- Lorentz因子:$\gamma_\bm{v}=\ds\frac1{\sqrt{1-\beta_\bm{v}^2}}$
- Minkowski計量テンソル:$\eta_{\mu\nu}=\eta^{\mu\nu}$,
\eta_{\mu\nu}=\begin{pmatrix}1&0&0&0\\ 0&-1&0&0\\ 0&0&-1&0\\ 0&0&0&-1\end{pmatrix}
- Lorentz変換テンソル:$\Lambda^{\;\mu}_\nu$,慣性系間相対速度が$x$方向のみの場合,
\begin{pmatrix}\gamma_v&-\gamma_v\beta_v&0&0\\-\gamma_v\beta_v&\gamma_v&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}
- 固有時間:$\tau=\ds\frac{t}{\gamma_\bm{v}},(c\tau)^2=x^\mu x_\mu=(ct)^2-\bm{x}^2$
- 相対論的速度:$u^i=\ds\dif{\tau}{x^i}=\dif{\tau}{t}\dif{t}{x^i}=\gamma_\bm{v}v^i$
- 相対論的エネルギー:$E=m\gamma_\bm{v}c^2=\sqrt{m^2c^4+\bm{p}^2c^2}=mc^2+E_\mathrm{K},E_\mathrm{K}=mc^2(\gamma_\bm{v}-1)$
- 相対論的運動量:$p^i=m\gamma_\bm{v}v^i=mu^i$
- 相対論的力:$f^i=\ds\dif{\tau}{p^i}=\dif{\tau}{t}\dif{t}{p^i}=\gamma_\bm{v}\dif{t}{p^i}$
- 微分ベクトル:$\partial_\mu=\ds\pdif{x^\mu}{},\partial^\mu=\eta^{\mu\nu}\partial_\nu$
- 四元ベクトル:$A^\mu=\Lambda_{\nu}^{\;\mu}A^\nu,A_\mu=\eta_{\mu\nu}A^\nu,A_\mu=\Lambda^\nu_{\;\mu}A_\nu$
- 四元位置ベクトル:$\fvec{x^0}{x^1}{x^2}{x^3}=\fvec{ct}{x}{y}{z}$
- 四元速度ベクトル:$u^\mu=\dif{\tau}{}x^\mu=\begin{pmatrix}c\gamma_\bm{v}\ u^i\end{pmatrix}$
- 四元運動量ベクトル:$p^\mu=\begin{pmatrix}E/c\ p^i\end{pmatrix}$
- 四元力ベクトル:$f^\mu=\dif{\tau}{}p^\mu=\gamma_\bm{v}\begin{pmatrix}\frac1c\dif{t}{E}\ f^i\end{pmatrix}$
- 四元電流密度ベクトル:$J^\mu=\begin{pmatrix}\rho c\ \bm{j}\end{pmatrix}$
- 四元電磁ポテンシャルベクトル:$A^\mu=\begin{pmatrix}\phi/c\ \bm{A}\end{pmatrix}$
- 四元波数ベクトル:$k^\mu=\begin{pmatrix}\omega/c\ \bm{k}\end{pmatrix}$
- 電磁気テンソル:$F^{\mu\nu}$,
F^{\mu\nu}=\begin{pmatrix}0&-E_x/c&-E_y/c&-E_z/c\\ E_x/c&0&-B_z&B_y\\ E_y/c&B_z&0&-B_x\\ E_z/c&-B_y&B_x&0\end{pmatrix}
- Lorenzゲージ:$\nabla\cdot\bm{A}+\frac1{c^2}\pdif{t}\phi=0$
-
んなわけないだろ ↩