0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

ガンマ関数・ディガンマ関数を理解したい

Last updated at Posted at 2021-11-30

目標

  • 論文でガンマ・ディガンマ関数に遭遇してもひるまない自分を手に入れる

###ガンマ関数のモチベーション

  • 正の整数以外の数にも階乗を定義したい。(今回は正の実数への拡張のみを考える。)

定義

\Gamma(s) = \int_0^{\infty} x^{s-1}\space e^{-x}\space dx, \space s \in R^{+}

性質1

\Gamma(s) = (s-1)!,\space  s\in N

証明1

\Gamma(s) = (s-1)\Gamma(s-1)
= (s-1)(s-2)\Gamma(s-2)
=(s-1)(s-2)\cdots \Gamma(1)
= (s-1)(s-2)\cdots1
= (s-1)!

性質2

\Gamma(s) = (s-1)\Gamma(s-1), s>1

証明2

\Gamma(s) = \int_{0}^{\infty}x^{s-1} e^{-x}dx = [x^{s-1}-e^{-x}]_0^{\infty} - \int_0^{\infty}(s-1)x^{s-2}-e^{-x}dx= (s-1)\int_0^{\infty}x^{s-2}e^{-x}dx = (s-1)\Gamma(s-1)

性質3

\Gamma(\frac{1}{2}) = \sqrt \pi

証明3

\Gamma(\frac{1}{2}) = \int_0^{\infty} x^{-\frac{1}{2}}e^{-x} dx = \int_0^{\infty}t^{-1}e^{-t^2}2tdt = 2\int_0^{\infty} e^{-t^2}dt = \sqrt \pi

(t^2 = x \rightarrow dx/dt = 2t \rightarrow dx = 2tdt

\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt \pi)

視覚化

image.png

ディガンマ関数のモチベーション

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?