0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

Rで混合ガウスモデル実装 (ギブスサンプリング)

Last updated at Posted at 2020-11-16

記事の目的

Rで混合ガウスモデルのギブスサンプリングを実装します。
For文をできるだけ使用せず、早く学習するようにしました。
参考: ノンパラメトリックベイズ 点過程と統計的機械学習の数理

目次

No. 目次
1 モデルの説明
2 データとライブラリ
3 実装
4 確認

1. モデルの説明

IMG_0196.jpeg

2. データとライブラリ

データはirisのデータセットを使用します。

X <- iris[,1:4]
D <- ncol(X)
N <- nrow(X)
library(mvtnorm)
library(MCMCpack)
library(cluster)

3. 実装

library(mvtnorm)
library(MCMCpack)
# (1)Kを求める
K <- 3
# (2)muを乱数で初期化
set.seed(100)
mu <- matrix(rep(apply(X,2,mean),each=K)+rnorm(K*D,0,0.1), nrow=K)
# (3)
a0 <- 1
b0 <- 1
alpha0 <- 1
# (4)
pi <- rep(1/K, K)
t <- 1
# (5)(ⅰ)-(ⅳ)を繰り返す
max.iter <- 5
a <- a0 + N*D/2
for(s in 1:max.iter){
  #(ⅰ)zのサンプリング
  tmp <- t(apply(mu, 1, function(x) dmvnorm(X, x, diag(D)/t)))*as.vector(pi)
  z <- apply(tmp, 2, function(x) which.max(rmultinom(1,3,x)))
  #(ⅱ)mu(µ)のサンプリング
  n <- tapply(z, z, length)
  x.k <-  apply(X, 2, function(x) tapply(x, z, mean))
  mu <- t(apply(cbind(x.k, n), 1,
                function(x) rmvnorm(1, x[D+1]*x[1:(D)]/(x[D+1]+1), diag(D)/(t*(x[D+1]+1)))))
  #(ⅲ)t(τ)のサンプリング
  b <- b0 + sum(unlist(apply(X, 2, function(x) tapply(x, z, function(x) (x-mean(x))^2))))/2 +
    sum(as.vector(n/(2*(1+n)))*((x.k%*%t(x.k))*diag(K)))
  t <- rgamma(1, a, b)
  #(ⅳ)pi(π)のサンプリング
  alpha <- alpha0 + n
  pi <- rdirichlet(1, alpha)
}

4. 確認

左が正解で、右が実装の結果です。

library(cluster)
par(mfrow=c(1,2))
clusplot(X, iris[,5], color=TRUE, shade=FALSE, labels=4, lines=0)
clusplot(X, z, color=TRUE, shade=FALSE, labels=4, lines=0)

image.png

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?