0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

Rでポアソン混合モデル実装 (ギブスサンプリング)

Last updated at Posted at 2020-11-05

記事の目的

ポアソン混合モデルのギブスサンプリングをRで実装します。
参考:ベイズ推論による機械学習入門

目次

0. ライブラリ
1. モデルの説明
2. 推定する分布
3. パラメータ初期値設定
4. 事後分布
5. 確認

0. ライブラリ

library(dplyr)
library(mvtnorm)
library(MCMCpack)
library(gganimate)
set.seed(100)

1. モデルの説明

IMG_0178.jpeg

2. 推定する分布

50が平均のポアソン分布と、80が平均のポアソン分布が1:3の割合で混合しているモデルです。

N <- 1000
s.true  <- rmultinom(N, 1, c(1/4, 3/4)) %>% apply(2, which.max)
X <- append(rpois(N, 50)[s.true==1], rpois(N, 80)[s.true==2])
NULL %>% ggplot(aes(x=X)) + geom_histogram(position = "identity", alpha=0.7)
N <- length(X)

image.png

3. パラメータの初期値設定

# ハイパーパラメータ設定
K <- 2
alpha0 <- rep(1/K, K)
a0 <- rep(1, K)
b0 <- rep(1, K)
# パラメータ初期値設定
pi <- rep(1/K, K)
s <- rep(1:K, N)[1:N]
lambda <- rep(100, K)
alpha <- {}
a <- {}
b <- {}
s.Data1 <- data.frame(s, iter=rep(0, N))

4. 事後分布

max.iter <- 30
eata <- matrix(NA, nrow = N, ncol=K)
for(t in 1:max.iter){
  #sのサンプリング
  for(i in 1:N){
    eata[i, ] <- (X[i]*log(lambda) - lambda + log(pi)) %>% exp()
    s[i] <- rmultinom(1, 3, eata[i, ]) %>% apply(2, which.max)
  }
  s.Data2 <- data.frame(s, iter=rep(t, N))
  s.Data1 <- rbind(s.Data1, s.Data2)
  #lambdaのサンプリング
  for(k in 1:K){
    a[k] <- sum(X[s==k]) + a0[k]
    b[k] <- (X[s==k] %>% length()) + b0[k]
    lambda[k] <- rgamma(1, a[k], b[k])
  }
  #piのサンプリング
  for(k in 1:k){
    alpha[k] <- (X[s==k] %>% length()) + alpha0[k]
  }
  pi <- rdirichlet(1, alpha)
}

5. 確認

iter15でだいたい分類できていることが分かります。

s.Data <- s.Data1 %>% filter(iter==0|iter==5|iter==15|iter==20|iter==25|iter==30)
s.Data <- data.frame(X=rep(X, 6), s.Data)
s.Data$s <- s.Data$s %>% as.factor()
s.Data %>% ggplot(aes(x=X, fill=s)) + geom_histogram(position = "identity", alpha=0.7) +
  transition_states(iter, transition_length = 2, state_length = 1)

a5.gif

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?