0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

14個の手牌を1274個の情報にして打牌予測する

Last updated at Posted at 2023-06-05

※この記事は2020年に作成しました

#概要
14個の手牌を、14個から2個とってくる91通りと、14個から3個取ってくる364通りにし、3個の場合は順子YN、刻子YN、国士の部品YNに、2個の場合は対子YN、塔子YNにいれ、その結果をまとめたものを1つの手牌とし、打牌を正解ラベルとして打牌予測をするようにした。
手牌数は鳴きなしのときのみの101437個使用した。
YNのモデルで判断する回数は、「データ数×((364通り×3つのYN)+(91通り×2つのYN))」なので、129,230,738‬回である。

 _{14}C_2=91\\
 _{14}C_3=364

###イメージ図
1274.png

#結果
テストデータに対する正解率は約11%ほどになった。
実行時間198747秒。

#作成したコード

import numpy as np
import itertools
import time
from keras.models import load_model
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
np.set_printoptions(threshold=10000000,linewidth=200)
t1 = time.time() 

data = 101437
x_train = np.zeros((data,34), dtype='float32')# x_trainは手牌
with open('C:/sqlite/tehai.csv', 'r') as fr:
    for i,row in enumerate(fr.readlines(),start=0):
        if i <data:
            x_train[i] += np.array(list(map(np.float,row[:34])))

dahai = np.zeros((data,34), dtype='float32')#打牌読み込み
with open('C:/sqlite/tehai.csv', 'r') as fr:
    for i,row in enumerate(fr.readlines(),start=0):
        if i <data:
            dahai[i] += np.array(list(map(np.float,row[:34])))


tehai = np.zeros((data,14))#x_trainを14個の手牌tehaiへ
for i in range(data):
    cnt = 0
    for j in range(34):
        if x_train[i,j] >= 1:
            tehai[i,cnt] = j
            cnt += 1
            x_train[i,j] -=1
        if x_train[i,j] >= 1:
            tehai[i,cnt] = j
            cnt += 1
            x_train[i,j] -=1
        if x_train[i,j] >= 1:
            tehai[i,cnt] = j
            cnt += 1
            x_train[i,j] -=1
        if x_train[i,j] >= 1:
            tehai[i,cnt] = j
            cnt += 1
            x_train[i,j] -=1

label=[0,1]
tehaiC364 = np.zeros((data,364,3))
for i in range(data):#tehaiを364通りへ
    tehaiC364[i,] = list(itertools.combinations(tehai[i,], 3))
    #print(tehaiC[i,])

tehaiC91 = np.zeros((data,91,2))
for i in range(data):#tehaiを91通りへ
    tehaiC91[i,] = list(itertools.combinations(tehai[i,], 2))

label = [0,1]
modelToitsu = load_model('toitsuYN.h5')   
ToitsuYN = np.zeros((data,91))#対子YNの結果を入れる
for i in range(data):#tehaiC78を対子YNにかける
    for j in range(91):
        x_train = np.zeros((1,2))
        x_train[0,] = tehaiC91[i,j]
        x_train = x_train/33.
        pred = modelToitsu.predict(x_train, batch_size=1, verbose=1)
        pred_label = label[np.argmax(pred[0])]
        ToitsuYN[i,j] = np.argmax(pred[0])

modelTatsu = load_model('tatsuYN.h5')  
TatsuYN = np.zeros((data,91))#塔子YNの結果を入れる
for i in range(data):#tehaiC91を塔子YNにかける
    for j in range(91):
        x_train = np.zeros((1,2))
        x_train[0,] = tehaiC91[i,j]
        x_train = x_train/33.
        pred = modelTatsu.predict(x_train, batch_size=1, verbose=1)
        pred_label = label[np.argmax(pred[0])]
        TatsuYN[i,j] = np.argmax(pred[0])

modelShunts = load_model('shuntsYN.h5')   
ShuntsYN = np.zeros((data,364))#順子YNの結果を入れる
for i in range(data):#tehaiCを順子YNにかける
    for j in range(364):
        x_train = np.zeros((1,3))
        x_train[0,] = tehaiC364[i,j]
        x_train = x_train/33.
        pred = modelShunts.predict(x_train, batch_size=1, verbose=1)
        pred_label = label[np.argmax(pred[0])]
        ShuntsYN[i,j] = np.argmax(pred[0])

modelkotsu = load_model('kotsuYN.h5')
kotsuYN = np.zeros((data,364))#刻子YNの結果を入れる
for i in range(data):#tehaiCを刻子YNにかける
    for j in range(364):
        x_train = np.zeros((1,3))
        x_train[0,] = tehaiC364[i,j]
        x_train = x_train/33.
        pred = modelkotsu.predict(x_train, batch_size=1, verbose=1)
        pred_label = label[np.argmax(pred[0])]
        kotsuYN[i,j] = np.argmax(pred[0])


modelkokushi = load_model('kokushiYN.h5')
kokushiYN = np.zeros((data,364))#国士YNの結果を入れる
for i in range(data):#tehaiCを国士YNにかける
    for j in range(364):
        x_train = np.zeros((1,3))
        x_train[0,] = tehaiC364[i,j]
        x_train = x_train/33.
        pred = modelkokushi.predict(x_train, batch_size=1, verbose=1)
        pred_label = label[np.argmax(pred[0])]
        kokushiYN[i,j] = np.argmax(pred[0])

YN5 = np.zeros((data,1274))
for i in range(data):
    ShunKotYN = np.hstack((ShuntsYN[i,],kotsuYN[i,]))
    SKKYN = np.hstack((ShunKotYN,kokushiYN[i,]))
    SKKYN_toitsu = np.hstack((SKKYN,ToitsuYN[i,]))
    SKKYN_tatsu = np.hstack((SKKYN_toitsu,TatsuYN[i,]))
    YN5[i,] = SKKYN_tatsu

model = Sequential()

#中間層、入力層、活性化関数ReLU関数
model.add(Dense(units=637,input_shape=(1274,),activation='relu'))
#出力層2、活性化関数ソフトマックス関数
model.add(Dense(units=34,activation='softmax'))

#最適化アルゴリズムAdam、損失関数クロスエントロピー
model.compile(
    optimizer=Adam(lr=0.001),
    loss='categorical_crossentropy',
    metrics=['accuracy'],
)

history_adam=model.fit(
    YN5,
    dahai,
    batch_size=100,
    epochs=1,
    verbose=1,
    shuffle = True,
    validation_split=0.2
)

t2 = time.time()
elapsed_time = t2-t1
print(f"経過時間:{elapsed_time}")
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?