0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

13個の手牌を1014個の情報にして聴牌かどうかを判断するニューラルネットワーク

Last updated at Posted at 2023-06-05

※この記事は2020年に作成しました

#概要
13個の手牌を286通りにして3つのニューラルネットワークにかけてその結果から聴牌かどうかを判断するニューラルネットワークにさらに、13個から2個取ってくる78通りの2つの牌が、対子かどうかを判断するYNと、塔子がどうかを判断するYNを付けたもの。
3つ牌を選んだ286通りを3つのYNで、2つの牌を選んだ78通りを2つのYNでの結果を聴牌YNの学習データとしている。
データ数は4942個の聴牌データと4942個のノーテンデータを使用している。
YNのモデルで判断する回数は、「データ数×((286通り×3つのYN)+(78通り×2つのYN))」なので、1002万2376回である。

 _{13}C_2=78

#結果
テストデータに対する正解率は、98.6%ほどになった。
aaaaaaaaaaaaaaa.png

#作成したプログラム

# coding: UTF-8
import numpy as np
import itertools
import time
from keras.models import load_model
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
np.set_printoptions(threshold=10000000,linewidth=200)
t1 = time.time() 

#x_test = np.loadtxt("C:/Users/p-user/Desktop/csvdata/old/tehai_xtest.csv",delimiter=",")
#y_test = np.loadtxt("C:/Users/p-user/Desktop/csvdata/old/tehai_ytest.csv",delimiter=",")

data = 4942
x_train = np.zeros((data,34), dtype='float32')# x_trainは聴牌の手牌
with open('C:/sqlite/tenpai.csv', 'r') as fr:
    for i,row in enumerate(fr.readlines(),start=0):
        if i <data:
            x_train[i] += np.array(list(map(np.float,row[:34])))

y_train = np.zeros((data,34), dtype='float32')# y_trainはノーテンの手牌
with open('C:/sqlite/noten.csv', 'r') as fr:
    for i,row in enumerate(fr.readlines(),start=0):
        if i <data:
            y_train[i] += np.array(list(map(np.float,row[:34])))


tehai = np.zeros((data,13))#x_trainを13個の手牌tehaiへ
for i in range(data):
    cnt = 0
    for j in range(34):
        if x_train[i,j] >= 1:
            tehai[i,cnt] = j
            cnt += 1
            x_train[i,j] -=1
        if x_train[i,j] >= 1:
            tehai[i,cnt] = j
            cnt += 1
            x_train[i,j] -=1
        if x_train[i,j] >= 1:
            tehai[i,cnt] = j
            cnt += 1
            x_train[i,j] -=1
        if x_train[i,j] >= 1:
            tehai[i,cnt] = j
            cnt += 1
            x_train[i,j] -=1

tehaiN = np.zeros((data,13))#y_trainを13個の手牌tehaiNへ
for i in range(data):
    cnt = 0
    for j in range(34):
        if y_train[i,j] >= 1:
            tehaiN[i,cnt] = j
            cnt += 1
            y_train[i,j] -=1
        if y_train[i,j] >= 1:
            tehaiN[i,cnt] = j
            cnt += 1
            y_train[i,j] -=1
        if y_train[i,j] >= 1:
            tehaiN[i,cnt] = j
            cnt += 1
            y_train[i,j] -=1
        if y_train[i,j] >= 1:
            tehaiN[i,cnt] = j
            cnt += 1
            y_train[i,j] -=1

label=[0,1]
tehaiC = np.zeros((data,286,3))
for i in range(data):#tehaiを286通りへ
    tehaiC[i,] = list(itertools.combinations(tehai[i,], 3))
    #print(tehaiC[i,])

tehaiCN = np.zeros((data,286,3))
for i in range(data):#tehaiNを286通りへ
    tehaiCN[i,] = list(itertools.combinations(tehaiN[i,], 3))
    #print(tehaiC[i,])

tehaiC78 = np.zeros((data,78,2))
for i in range(data):#tehaiを78通りへ
    tehaiC78[i,] = list(itertools.combinations(tehai[i,], 2))

tehaiCN78 = np.zeros((data,78,2))
for i in range(data):#tehaiNを78通りへ
    tehaiCN78[i,] = list(itertools.combinations(tehaiN[i,], 2))

modelToitsu = load_model('toitsuYN.h5')   
ToitsuYN = np.zeros((data*2,78))#対子YNの結果を入れる
for i in range(data):#tehaiC78を対子YNにかける
    for j in range(78):
        x_train = np.zeros((1,2))
        x_train[0,] = tehaiC78[i,j]
        x_train = x_train/33.
        pred = modelToitsu.predict(x_train, batch_size=1, verbose=1)
        pred_label = label[np.argmax(pred[0])]
        ToitsuYN[i,j] = np.argmax(pred[0])
for i in range(data):#tehaiCN78を対子YNにかける
    for j in range(78):
        x_train = np.zeros((1,2))
        x_train[0,] = tehaiCN78[i,j]
        x_train = x_train/33.
        pred = modelToitsu.predict(x_train, batch_size=1, verbose=1)
        pred_label = label[np.argmax(pred[0])]
        ToitsuYN[i+data,j] = np.argmax(pred[0])

modelTatsu = load_model('tatsuYN.h5')  
TatsuYN = np.zeros((data*2,78))#塔子YNの結果を入れる
for i in range(data):#tehaiC78を塔子YNにかける
    for j in range(78):
        x_train = np.zeros((1,2))
        x_train[0,] = tehaiC78[i,j]
        x_train = x_train/33.
        pred = modelTatsu.predict(x_train, batch_size=1, verbose=1)
        pred_label = label[np.argmax(pred[0])]
        TatsuYN[i,j] = np.argmax(pred[0])
for i in range(data):#tehaiCN78を塔子YNにかける
    for j in range(78):
        x_train = np.zeros((1,2))
        x_train[0,] = tehaiCN78[i,j]
        x_train = x_train/33.
        pred = modelTatsu.predict(x_train, batch_size=1, verbose=1)
        pred_label = label[np.argmax(pred[0])]
        TatsuYN[i+data,j] = np.argmax(pred[0])

modelShunts = load_model('shuntsYN.h5')   
ShuntsYN = np.zeros((data*2,286))#順子YNの結果を入れる
for i in range(data):#tehaiCを順子YNにかける
    for j in range(286):
        x_train = np.zeros((1,3))
        x_train[0,] = tehaiC[i,j]
        x_train = x_train/33.
        pred = modelShunts.predict(x_train, batch_size=1, verbose=1)
        pred_label = label[np.argmax(pred[0])]
        ShuntsYN[i,j] = np.argmax(pred[0])
for i in range(data):#tehaiCNを順子YNにかける
    for j in range(286):
        x_train = np.zeros((1,3))
        x_train[0,] = tehaiCN[i,j]
        x_train = x_train/33.
        pred = modelShunts.predict(x_train, batch_size=1, verbose=1)
        pred_label = label[np.argmax(pred[0])]
        ShuntsYN[i+data,j] = np.argmax(pred[0])

modelkotsu = load_model('kotsuYN.h5')
kotsuYN = np.zeros((data*2,286))#刻子YNの結果を入れる
for i in range(data):#tehaiCを刻子YNにかける
    for j in range(286):
        x_train = np.zeros((1,3))
        x_train[0,] = tehaiC[i,j]
        x_train = x_train/33.
        pred = modelkotsu.predict(x_train, batch_size=1, verbose=1)
        pred_label = label[np.argmax(pred[0])]
        kotsuYN[i,j] = np.argmax(pred[0])
for i in range(data):#tehaiCNを刻子YNにかける
    for j in range(286):
        x_train = np.zeros((1,3))
        x_train[0,] = tehaiCN[i,j]
        x_train = x_train/33.
        pred = modelkotsu.predict(x_train, batch_size=1, verbose=1)
        pred_label = label[np.argmax(pred[0])]
        kotsuYN[i+data,j] = np.argmax(pred[0])

modelkokushi = load_model('kokushiYN.h5')
kokushiYN = np.zeros((data*2,286))#国士YNの結果を入れる
for i in range(data):#tehaiCを国士YNにかける
    for j in range(286):
        x_train = np.zeros((1,3))
        x_train[0,] = tehaiC[i,j]
        x_train = x_train/33.
        pred = modelkokushi.predict(x_train, batch_size=1, verbose=1)
        pred_label = label[np.argmax(pred[0])]
        kokushiYN[i,j] = np.argmax(pred[0])
for i in range(data):
    for j in range(286):#tehaiCNを国士YNにかける
        x_train = np.zeros((1,3))
        x_train[0,] = tehaiCN[i,j]
        x_train = x_train/33.
        pred = modelkokushi.predict(x_train, batch_size=1, verbose=1)
        pred_label = label[np.argmax(pred[0])]
        kokushiYN[i+data,j] = np.argmax(pred[0])

YN3 = np.zeros((data*2,1014))
for i in range(data*2):
    ShunKotYN = np.hstack((ShuntsYN[i,],kotsuYN[i,]))
    SKKYN = np.hstack((ShunKotYN,kokushiYN[i,]))
    SKKYN_toitsu = np.hstack((SKKYN,ToitsuYN[i,]))
    SKKYN_tatsu = np.hstack((SKKYN_toitsu,TatsuYN[i,]))
    YN3[i,] = SKKYN_tatsu
#print(YN3[0,])
#print(YN3.shape)

train = np.zeros((data*2,1015))
for i in range(data):
    x = np.append(YN3[i,],1)
    train[i,] = x

for i in range(data):
    x = np.append(YN3[i+data,],0)
    train[i+data,] = x

np.random.shuffle(train)
lavel = np.zeros((data*2,1))

for i in range(data*2):
    if train[i,1014] == 1:
        lavel[i,0] = 1

train=np.delete(train,1014,1)
lavel = to_categorical(lavel,2)
#trainが学習データ
#lavelが正解ラベル

model = Sequential()

#中間層、入力層、活性化関数ReLU関数
model.add(Dense(units=507,input_shape=(1014,),activation='relu'))
#出力層2、活性化関数ソフトマックス関数
model.add(Dense(units=2,activation='softmax'))

#最適化アルゴリズムAdam、損失関数クロスエントロピー
model.compile(
    optimizer=Adam(lr=0.005),
    loss='categorical_crossentropy',
    metrics=['accuracy'],
)

history_adam=model.fit(
    train,
    lavel,
    batch_size=100,
    epochs=50,
    verbose=1,
    shuffle = True,
    validation_split=0.2
)
#model.save('tenpaiYN.h5')

t2 = time.time()
elapsed_time = t2-t1
print(f"経過時間:{elapsed_time}")

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?