5
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

[ゼロから作るDeep Learning]損失関数 二乗和誤差をわかりやすく解説してみた

Posted at

#はじめに
この記事はゼロから作るディープラーニング 5章ニューラルネットワークの学習を自分なりに理解して分かりやすくアウトプットしたものです。
文系の自分でも理解することが出来たので、気持ちを楽にして読んでいただけたら幸いです。
また、本書を学習する際に参考にしていただけたらもっと嬉しいです。

#二乗和誤差
二乗和誤差とは回帰問題を解くためのニューラルネットワークの性能の悪さを出したいときによく使われる損失関数です。
スクリーンショット 2019-10-21 19.35.05.png
予測値から正解データの値を引いた予測値と正解データの誤差を二乗して総和したものを➗2します。
スクリーンショット 2019-10-21 20.19.21.png

では実際に実装してみます。

#二乗和誤差実装
t = np.array([0,0,0,0,1])#正解データ
y = np.array([0.1,0.05,0.05,0.1,0.7])
def Sum_squared_error(t,y):
    s = ((y - t)**2).sum()
    return s * 0.5
Sum_squared_error(t,y)
0.057500000000000016

前回の記事でも解説しましたが、ニューラルネットワークの学習は損失関数の最小化を目指すので、上の例はかなり0に近い値なのですごく良いと言えます。

5
5
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
5
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?