LoginSignup
7

More than 3 years have passed since last update.

組合せ最適化 - 最小カット問題

Last updated at Posted at 2016-11-04

典型問題と実行方法最大流問題と双対関係にあり、最大フロー最小カット定理が成り立つ

最小カット問題

グラフ$G=(V,E)$の最大流に対し、始点$v_s \in V$(ソース)と終点$v_t \in V$(シンク)を分ける2つのグループを考え、両端が両グループに属する辺の流量の和が最小となるグループ分け(カットとよぶ)を求めよ。

実行方法

usage
Signature: nx.minimum_cut(G, s, t, capacity='capacity', flow_func=None, **kwargs)
Docstring:
Compute the value and the node partition of a minimum (s, t)-cut.
python
# CSVデータ
import pandas as pd, networkx as nx
from ortoolpy import graph_from_table, networkx_draw
tbn = pd.read_csv('data/node0.csv')
tbe = pd.read_csv('data/edge0.csv')
g = graph_from_table(tbn, tbe)
networkx_draw(g)
nx.minimum_cut(g, 5, 2)
>>>
(6, ({0, 1, 3, 4, 5}, {2}))

ノード2とそれ以外で分けられて、最小カットは6となる。

image

python
# 乱数データ
import networkx as nx, matplotlib.pyplot as plt
from ortoolpy import networkx_draw
g = nx.random_graphs.fast_gnp_random_graph(10, 0.3, 1)
for i, j in g.edges():
    g.adj[i][j]['capacity'] = 1
pos = networkx_draw(g, nx.spring_layout(g))
nx.draw_networkx_edges(g, pos)
nx.minimum_cut(g, 5, 6)
>>>
(3, ({2, 5}, {0, 1, 3, 4, 6, 7, 8, 9}))

image

データ

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
7