LoginSignup
2

More than 3 years have passed since last update.

組合せ最適化 - 典型問題 - 最大カット問題

Last updated at Posted at 2015-07-10

典型問題と実行方法

最大カット問題

無向グラフ$G=(V, E)$において、各辺$e_{ij}=(v_i,v_j)\in E$に非負の重み$w_{ij}$が付与されているとする。このとき、$\sum_{v_i \in V_1, v_j \in V_2}{w_{ij}}$を最大にする$V_1, V_2(=V \setminus V_1)$を求めよ。

実行方法

usage
Signature: maximum_cut(g, weight='weight')
Docstring:
最大カット問題
入力
    g: グラフ(node:weight)
    weight: 重みの属性文字
出力
    カットの重みの合計と片方の頂点番号リスト
python
# CSVデータ
import pandas as pd, networkx as nx, matplotlib.pyplot as plt
from ortoolpy import graph_from_table, networkx_draw, maximum_cut
tbn = pd.read_csv('data/node0.csv')
tbe = pd.read_csv('data/edge0.csv')
g = graph_from_table(tbn, tbe)[0]
t = maximum_cut(g)
pos = networkx_draw(g, node_color='white')
nx.draw_networkx_nodes(g, pos, nodelist=t[1])
plt.show()
print(t)
結果
(27.0, [2, 4, 5])

mct2.png

python
# pandas.DataFrame
from ortoolpy.optimization import MaximumCut
MaximumCut('data/node0.csv','data/edge0.csv')[1]
id x y demand weight
2 2 10 5 0 1
4 4 2 2 1 2
5 5 0 5 1 1
python
# 乱数データ
import networkx as nx, matplotlib.pyplot as plt
from ortoolpy import networkx_draw
g = nx.random_graphs.fast_gnp_random_graph(10, 0.3, 4)
for i, j in g.edges():
    g.adj[i][j]['weight'] = 1
t = maximum_cut(g)
pos = networkx_draw(g, nx.spring_layout(g), node_color='white')
nx.draw_networkx_nodes(g, pos, nodelist=t[1])
plt.show()

mct.png

データ

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2