10
12

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

組合せ最適化でN Queen問題を解く

Last updated at Posted at 2016-05-29

N Queen問題とは

N × Nの盤上に、N個のクイーンを配置する。このとき、
どの駒も他の駒に取られるような位置においてはいけない。

この問題も組合せ最適化で解けます。

定式化

目的関数 なし
変数 $x_j \in \{0, 1\} ~ ~ \forall j \in 各マス$ そのマスに置くかどうか
制約条件 $\sum_{j \in 各マス~~~~~}{\{x_j|縦がi列\}} = 1 ~ ~ \forall i \in \{0, \cdots, N-1\}$ 1列に1つ
$\sum_{j \in 各マス~~~~~}{\{x_j|横がi行\}} = 1 ~ ~ \forall i \in \{0, \cdots, N-1\}$ 1行に1つ
$\sum_{j \in 各マス~~~~~}{\{x_j|縦+横がi\}} \le 1 ~ ~ \forall i \in \{0, \cdots, 2 N-2\}$ 斜めは1つ以下
$\sum_{j \in 各マス~~~~~}{\{x_j|縦-横がi-N+1\}} \le 1 ~ ~ \forall i \in \{0, \cdots, 2 N-2\}$ 斜めは1つ以下

Pythonで解いてみる

定式化して解いてみましょう。

python3
%matplotlib inline
import pandas as pd, matplotlib.pyplot as plt
from itertools import product
from ortoolpy import addvar
from pulp import *
def NQueen(N):
    r = range(N)
    m = LpProblem()
    a = pd.DataFrame([(i, j, addvar(cat=LpBinary))
        for i, j in product(r, r)], columns=['', '', 'x'])
    for i in r:
        m += lpSum(a[a. == i].x) == 1
        m += lpSum(a[a. == i].x) == 1
    for i in range(2*N-1):
        m += lpSum(a[a. + a. == i].x) <= 1
        m += lpSum(a[a. - a. == i-N+1].x) <= 1
    %time m.solve()
    return a.x.apply(value).reshape(N, -1)
for N in [8, 16, 32, 64, 128]:
    plt.imshow(NQueen(N), cmap='gray', interpolation='none')
    plt.show()
>>>
CPU times: user 4 ms, sys: 4 ms, total: 8 ms
Wall time: 27.5 ms

CPU times: user 16 ms, sys: 4 ms, total: 20 ms
Wall time: 84.4 ms

CPU times: user 48 ms, sys: 4 ms, total: 52 ms
Wall time: 272 ms

CPU times: user 236 ms, sys: 0 ns, total: 236 ms
Wall time: 1.88 s

CPU times: user 956 ms, sys: 20 ms, total: 976 ms
Wall time: 11.3 s

image

以上

10
12
1

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
10
12

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?