Help us understand the problem. What is going on with this article?

NumPyでしきい値以上の位置を求める

More than 3 years have passed since last update.

NumPyで 昇順のデータに対して value >= threshold となる index を求める

方法

  1. 「np.array < th」の argmin
  2. 「np.array >= th」の searchsorted
  3. 「np.array < th」の長さ
  4. 「np.array < th」の sum
  5. 「np.array >= th」の where
  6. for ループで探す
  7. 「takewhile」 の長さ

7通りの方法で、結果が正しいことを確認

python
import numpy as np
from more_itertools import ilen
from itertools import takewhile

def find_index(a, ths):
    for i,v in enumerate(a):
        if v >= th:
            break
    return i

n = 10000000
x = np.arange(n)
th = n / 10
print((x < th).argmin())
print(np.searchsorted(x, th))
print(len(x[x < th]))
print((x < th).sum())
print(np.where(x>=th)[0][0])
print(find_index(x, th))
print(ilen(takewhile(lambda i: i < th, x)))
>>>
1000000
1000000
1000000
1000000
1000000
1000000
1000000

計測

python
%timeit np.searchsorted(x, th)
%timeit (x < th).argmin()
%timeit len(x[x < th])
%timeit (x < th).sum()
%timeit np.where(x >= th)[0][0]
%timeit find_index(x, th)
%timeit ilen(takewhile(lambda i: i < th, x))
>>>
3.84 µs ± 347 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
10.2 ms ± 215 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
12.5 ms ± 62.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
21.2 ms ± 411 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
43.1 ms ± 635 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
3.36 µs ± 19.3 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
5.74 µs ± 75.5 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
python
th = 10
%timeit np.searchsorted(x, th)
%timeit (x < th).argmin()
%timeit len(x[x < th])
%timeit (x < th).sum()
%timeit np.where(x >= th)[0][0]
%timeit find_index(x, th)
%timeit ilen(takewhile(lambda i: i < th, x))
>>>
3.31 µs ± 24.8 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
9.86 ms ± 28.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
13.1 ms ± 530 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
21.7 ms ± 761 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
46.9 ms ± 1.8 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
3.76 µs ± 310 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
6.01 µs ± 231 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

考察

  • searchsortedがよい
  • argmin と forループ ならば、ソートされている必要はない

以上

Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
Comments
No comments
Sign up for free and join this conversation.
If you already have a Qiita account
Why do not you register as a user and use Qiita more conveniently?
You need to log in to use this function. Qiita can be used more conveniently after logging in.
You seem to be reading articles frequently this month. Qiita can be used more conveniently after logging in.
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
ユーザーは見つかりませんでした