0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

AtCoder Beginner Contest 234

Posted at

A - Weird Function

O(1)
f(x)の関数を作成して計算式の処理を行います。

C++
# include <bits/stdc++.h>
 
# define rep(i,n) for(int i=0; i<(n); ++i)
# define repx(i,x,n) for(int i=x; i<(n); ++i)
# define fixed_setprecision(n) fixed << setprecision((n))
# define execution_time(ti) printf("Execution Time: %.4lf sec\n", 1.0 * (clock() - ti) / CLOCKS_PER_SEC);
# define pai 3.1415926535897932384
# define NUM_MAX 2e18
# define NUM_MIN -1e9
 
using namespace std;
using ll = long long;
using P = pair<int,int>;
template<class T> inline bool chmax(T& a, T b){ if(a<b){ a=b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b){ if(a>b){ a=b; return 1; } return 0; }

int f(int x){
    return x*x+2*x+3;
}

int main() {
    int t;
    cin >> t;

    cout << f(f(f(t)+t)+f(f(t))) << endl;

    return 0;
}

B - Longest Segment

O(N^2)
2点間の距離は、sqrt((x2-x1)^2+(y2-y1)^2)です。

C++
# include <bits/stdc++.h>
 
# define rep(i,n) for(int i=0; i<(n); ++i)
# define repx(i,x,n) for(int i=x; i<(n); ++i)
# define fixed_setprecision(n) fixed << setprecision((n))
# define execution_time(ti) printf("Execution Time: %.4lf sec\n", 1.0 * (clock() - ti) / CLOCKS_PER_SEC);
# define pai 3.1415926535897932384
# define NUM_MAX 2e18
# define NUM_MIN -1e9
 
using namespace std;
using ll = long long;
using P = pair<int,int>;
template<class T> inline bool chmax(T& a, T b){ if(a<b){ a=b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b){ if(a>b){ a=b; return 1; } return 0; }

int main() {
    int N;
    cin >> N;

    vector<double> x(N), y(N);
    rep(i, N)cin >> x[i] >> y[i];

    double ans = 0;
    rep(i, N){
        repx(j, i+1, N){
            double xx = abs(x[i] - x[j]);
            double yy = abs(y[i] - y[j]);
            double zz = sqrt(xx * xx + yy * yy);
            ans = max(ans, zz);
        }
    }
    cout << fixed_setprecision(7) << ans << endl;

    return 0;
}

C - Happy New Year!

O(N)
問題文は2進数を0と2で表現するとどのような表示になるかを聞いています。
int型や、long long型だと対応できないです。
文字列で表示します。

C++
# include <bits/stdc++.h>
 
# define rep(i,n) for(int i=0; i<(n); ++i)
# define repx(i,x,n) for(int i=x; i<(n); ++i)
# define fixed_setprecision(n) fixed << setprecision((n))
# define execution_time(ti) printf("Execution Time: %.4lf sec\n", 1.0 * (clock() - ti) / CLOCKS_PER_SEC);
# define pai 3.1415926535897932384
# define NUM_MAX 2e18
# define NUM_MIN -1e9
 
using namespace std;
using ll = long long;
using P = pair<int,int>;
template<class T> inline bool chmax(T& a, T b){ if(a<b){ a=b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b){ if(a>b){ a=b; return 1; } return 0; }

int main() {
    ll K;
    cin >> K;

    string ans;
    while(K>0){
        if(K%2==1) ans = "2" + ans;
        else ans = "0" + ans;
        K = K / 2;
    }
    cout << ans << endl;

    return 0;
}

D - Prefix K-th Max

O(N)
なぜかコンテスト本番中は解けませんでした。
プライオリティーキューを使用すると解決します。
単純に処理を行うとO(N^2)でTLEになります。

C++
# include <bits/stdc++.h>
 
# define rep(i,n) for(int i=0; i<(n); ++i)
# define repx(i,x,n) for(int i=x; i<(n); ++i)
# define fixed_setprecision(n) fixed << setprecision((n))
# define execution_time(ti) printf("Execution Time: %.4lf sec\n", 1.0 * (clock() - ti) / CLOCKS_PER_SEC);
# define pai 3.1415926535897932384
# define NUM_MAX 2e18
# define NUM_MIN -1e9
 
using namespace std;
using ll = long long;
using P = pair<int,int>;
template<class T> inline bool chmax(T& a, T b){ if(a<b){ a=b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b){ if(a>b){ a=b; return 1; } return 0; }
 
int main() {
    int N, K;
    cin >> N >> K;
 
    vector<int> P(N);
    rep(i, N) cin >> P[i];

    priority_queue<int, vector<int>, greater<int>> pque;
    rep(i, K) pque.push(P[i]);
    cout << pque.top() << endl;

    repx(i, K, N){
        if(pque.top()<P[i]){
            pque.pop();
            pque.push(P[i]);
        }
        cout << pque.top() << endl;
    }
 
    return 0;
}
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?