Help us understand the problem. What is going on with this article?

blas on Mac

More than 5 years have passed since last update.

Last login: Thu Jan 16 17:30:08 on console
$ ln -sf /System/Library/Frameworks/Accelerate.framework/Frameworks/vecLib.framework/Versions/Current/libBLAS.dylib /Library/Frameworks/R.framework/Resources/lib/libR
$ ls -la /Library/Frameworks/R.framework/Resources/lib/libRblas.*
-rwxrwxr-x /Library/Frameworks/R.framework/Resources/lib/libRblas.0.dylib
lrwxr-xr-x /Library/Frameworks/R.framework/Resources/lib/libRblas.dylib -> /System/Library/Frameworks/Accelerate.framework/Frameworks/vecLib.framework/Versions/Current/libBLAS.dylib

$ curl http://r.research.att.com/benchmarks/R-benchmark-25.R -O
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 13666 100 13666 0 0 16629 0 --:--:-- --:--:-- --:--:-- 16747
$ cat R-benchmark-25.R | time R --slave
要求されたパッケージ Matrix をロード中です
要求されたパッケージ lattice をロード中です
要求されたパッケージ SuppDists をロード中です
警告メッセージ:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
‘SuppDists’ という名前のパッケージはありません
警告メッセージ:
1: In remove("a", "b") : オブジェクト 'a' がありません
2: In remove("a", "b") : オブジェクト 'b' がありません

R Benchmark 2.5
===============
Number of times each test is run__________________________: 3

I. Matrix calculation


Creation, transp., deformation of a 2500x2500 matrix (sec): 1.301
2400x2400 normal distributed random matrix ^1000____ (sec): 0.652333333333333
Sorting of 7,000,000 random values__________________ (sec): 0.868000000000001
2800x2800 cross-product matrix (b = a' * a)_________ (sec): 2.26766666666667
Linear regr. over a 3000x3000 matrix (c = a \ b')___ (sec): 1.26133333333333
--------------------------------------------
Trimmed geom. mean (2 extremes eliminated): 1.12514621853669

II. Matrix functions


FFT over 2,400,000 random values____________________ (sec): 0.957333333333333
Eigenvalues of a 640x640 random matrix______________ (sec): 0.793666666666667
Determinant of a 2500x2500 random matrix____________ (sec): 1.61233333333333
Cholesky decomposition of a 3000x3000 matrix________ (sec): 1.23666666666666
Inverse of a 1600x1600 random matrix________________ (sec): 2.17333333333333
--------------------------------------------
Trimmed geom. mean (2 extremes eliminated): 1.24048130299108

III. Programmation


3,500,000 Fibonacci numbers calculation (vector calc)(sec): 0.767000000000001
Creation of a 3000x3000 Hilbert matrix (matrix calc) (sec): 0.463333333333338
Grand common divisors of 400,000 pairs (recursion)__ (sec): 1.38666666666667
Creation of a 500x500 Toeplitz matrix (loops)_______ (sec): -0.0883333333333335
Escoufier's method on a 45x45 matrix (mixed)________ (sec): 0.810000000000002
--------------------------------------------
Trimmed geom. mean (2 extremes eliminated): 0.660274679056538

Total time for all 15 tests_________________________ (sec): 16.4623333333333
Overall mean (sum of I, II and III trimmed means/3)_ (sec): 0.973138400073332
--- End of test ---

   91.08 real       116.03 user         2.70 sys

$

$ ln -sf /Library/Frameworks/R.framework/Resources/lib/libRblas.0.dylib /Library/Frameworks/R.framework/Resources/lib/libRblas.dylib
$ cat R-benchmark-25.R | time R --slave
要求されたパッケージ Matrix をロード中です
要求されたパッケージ lattice をロード中です
要求されたパッケージ SuppDists をロード中です
警告メッセージ:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
‘SuppDists’ という名前のパッケージはありません
警告メッセージ:
1: In remove("a", "b") : オブジェクト 'a' がありません
2: In remove("a", "b") : オブジェクト 'b' がありません

R Benchmark 2.5
===============
Number of times each test is run__________________________: 3

I. Matrix calculation


Creation, transp., deformation of a 2500x2500 matrix (sec): 1.304
2400x2400 normal distributed random matrix ^1000____ (sec): 0.655666666666666
Sorting of 7,000,000 random values__________________ (sec): 0.870666666666667
2800x2800 cross-product matrix (b = a' * a)_________ (sec): 17.3073333333333
Linear regr. over a 3000x3000 matrix (c = a \ b')___ (sec): 7.82633333333333
--------------------------------------------
Trimmed geom. mean (2 extremes eliminated): 2.07123455745388

II. Matrix functions


FFT over 2,400,000 random values____________________ (sec): 0.974333333333334
Eigenvalues of a 640x640 random matrix______________ (sec): 1.46933333333333
Determinant of a 2500x2500 random matrix____________ (sec): 7.16066666666667
Cholesky decomposition of a 3000x3000 matrix________ (sec): 5.63366666666667
Inverse of a 1600x1600 random matrix________________ (sec): 6.19733333333333
--------------------------------------------
Trimmed geom. mean (2 extremes eliminated): 3.71568404868733

III. Programmation


3,500,000 Fibonacci numbers calculation (vector calc)(sec): 0.75666666666667
Creation of a 3000x3000 Hilbert matrix (matrix calc) (sec): 0.472333333333334
Grand common divisors of 400,000 pairs (recursion)__ (sec): 1.37266666666667
Creation of a 500x500 Toeplitz matrix (loops)_______ (sec): 1.02999999999999
Escoufier's method on a 45x45 matrix (mixed)________ (sec): 0.925000000000011
--------------------------------------------
Trimmed geom. mean (2 extremes eliminated): 0.896660117664444

Total time for all 15 tests_________________________ (sec): 53.956
Overall mean (sum of I, II and III trimmed means/3)_ (sec): 1.90384668271523
--- End of test ---

  258.70 real       254.43 user         2.83 sys
R_Linux
Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
Comments
No comments
Sign up for free and join this conversation.
If you already have a Qiita account
Why do not you register as a user and use Qiita more conveniently?
You need to log in to use this function. Qiita can be used more conveniently after logging in.
You seem to be reading articles frequently this month. Qiita can be used more conveniently after logging in.
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
ユーザーは見つかりませんでした