Help us understand the problem. What is going on with this article?

RMeCabでデータフレームのテキスト列を読み込む

More than 3 years have passed since last update.

docDF() 関数は、ファイル、ファイルフォルダ、データフレームを対象に、文字ないし単語頻度、Ngram頻度などを出力します。
参考 http://rmecab.jp/wiki/index.php?RMeCabFunctions#icae4377

> library(RMeCab)
> target <- read.csv(text ='
+ ID,Sex,Reply
+ 1,M,写真とってくれよ
+ 2,F,写真とってください
+ 3,M,大きい写真とってね
+ 4,F,写真とってください
+ 5,M,写真とってっす
+ ')

> res <- docDF(target, col = 3, type=1, N=2,pos = c("名詞","動詞"),   Genkei = 1, nDF = 1)
number of extracted terms = 3
now making a data frame. wait a while!

> res
    N1       N2      POS1        POS2 Row1 Row2 Row3 Row4 Row5
1 とっ ください 動詞-動詞 自立-非自立    0    1    0    1    0
2 とっ     くれ 動詞-動詞 自立-非自立    1    0    0    0    0
3 写真     とっ 名詞-動詞   一般-自立    1    1    1    1    1
> library(RMeCab)
> target <- read.csv(text ='
+ ID,Sex,Reply
+ 1,M,写真とってくれよ
+ 2,F,写真とってください
+ 3,M,大きい写真とってね
+ 4,F,写真とってください
+ 5,M,写真とってっす
+ ')


> #おまけ
> #おまけ
>  (res <- docDF(target, col = 3, type=1, N=2,pos = c("名詞","動詞"), nDF = 2))
number of extracted terms = 3
now making a data frame. wait a while!

           TERM      POS1        POS2 Row1 Row2 Row3 Row4 Row5
1 とる-くださる 動詞-動詞 自立-非自立    0    1    0    1    0
2   とる-くれる 動詞-動詞 自立-非自立    1    0    0    0    0
3     写真-とる 名詞-動詞   一般-自立    1    1    1    1    1
> 
R_Linux
Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
Comments
No comments
Sign up for free and join this conversation.
If you already have a Qiita account
Why do not you register as a user and use Qiita more conveniently?
You need to log in to use this function. Qiita can be used more conveniently after logging in.
You seem to be reading articles frequently this month. Qiita can be used more conveniently after logging in.
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
ユーザーは見つかりませんでした