8
7

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

ResNeXt 実装

Last updated at Posted at 2018-11-27

ResNeXt

・入力を分岐させて畳み込み、最後に足し合わせる
・分岐する数をcardinalityとよぶ

image.png

実装



def _resblock(n_filters1, n_filters2, strides=(1,1)):
  def f(input):    
    x = Convolution2D(n_filters1, (1,1), strides=strides,
                                      kernel_initializer='he_normal', padding='same')(input)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Convolution2D(n_filters1, (3,3), strides=strides,
                                      kernel_initializer='he_normal', padding='same')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Convolution2D(n_filters2, (1,1), strides=strides,
                                      kernel_initializer='he_normal', padding='same')(x)
    x = BatchNormalization()(x)
 
    return x
    
  return f
   
def resnext():
  
  inputs = Input(shape=(32, 32, 3))
  x = Convolution2D(32, (7,7), strides=(1,1),
                    kernel_initializer='he_normal', padding='same')(inputs)
  x = BatchNormalization()(x)
  x = Activation('relu')(x)
  x = MaxPooling2D((3, 3), strides=(2,2), padding='same')(x)
  
  residual = Convolution2D(256, 1, strides=1, padding='same')(x)
  residual = BatchNormalization()(residual)
  
  x1 = _resblock(n_filters1=4, n_filters2=256)(x)
  x2 = _resblock(n_filters1=4, n_filters2=256)(x)
  x3 = _resblock(n_filters1=4, n_filters2=256)(x)
  x4 = _resblock(n_filters1=4, n_filters2=256)(x)
  x5 = _resblock(n_filters1=4, n_filters2=256)(x)
  x6 = _resblock(n_filters1=4, n_filters2=256)(x)
  x7 = _resblock(n_filters1=4, n_filters2=256)(x)
  x8 = _resblock(n_filters1=4, n_filters2=256)(x)
  x9 = _resblock(n_filters1=4, n_filters2=256)(x)
  x10 = _resblock(n_filters1=4, n_filters2=256)(x)
  x11 = _resblock(n_filters1=4, n_filters2=256)(x)
  x12 = _resblock(n_filters1=4, n_filters2=256)(x)
  x13 = _resblock(n_filters1=4, n_filters2=256)(x)
  x14 = _resblock(n_filters1=4, n_filters2=256)(x)
  x15 = _resblock(n_filters1=4, n_filters2=256)(x)
  x16 = _resblock(n_filters1=4, n_filters2=256)(x)
  x17 = _resblock(n_filters1=4, n_filters2=256)(x)
  x18 = _resblock(n_filters1=4, n_filters2=256)(x)
  x19 = _resblock(n_filters1=4, n_filters2=256)(x)
  x20 = _resblock(n_filters1=4, n_filters2=256)(x)
  x21 = _resblock(n_filters1=4, n_filters2=256)(x)
  x22 = _resblock(n_filters1=4, n_filters2=256)(x)
  x23 = _resblock(n_filters1=4, n_filters2=256)(x)
  x24 = _resblock(n_filters1=4, n_filters2=256)(x)
  x25 = _resblock(n_filters1=4, n_filters2=256)(x)
  x26 = _resblock(n_filters1=4, n_filters2=256)(x)
  x27 = _resblock(n_filters1=4, n_filters2=256)(x)
  x28 = _resblock(n_filters1=4, n_filters2=256)(x)
  x29 = _resblock(n_filters1=4, n_filters2=256)(x)
  x30 = _resblock(n_filters1=4, n_filters2=256)(x)
  x31 = _resblock(n_filters1=4, n_filters2=256)(x)
  x32 = _resblock(n_filters1=4, n_filters2=256)(x)
  
  
  x_all = add([x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,
               x11,x12,x13,x14,x15,x16,x17,x18,x19,x20,
               x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,
               x31,x32])
  
 
  x = add([x_all, residual])
  
  x = MaxPooling2D((3, 3), strides=(2,2), padding='same')(x)
  residual = Convolution2D(512, 1, strides=1, padding='same')(x)
  residual = BatchNormalization()(residual)

  x1 = _resblock(n_filters1=8, n_filters2=512)(x)
  x2 = _resblock(n_filters1=8, n_filters2=512)(x)
  x3 = _resblock(n_filters1=8, n_filters2=512)(x)
  x4 = _resblock(n_filters1=8, n_filters2=512)(x)
  x5 = _resblock(n_filters1=8, n_filters2=512)(x)
  x6 = _resblock(n_filters1=8, n_filters2=512)(x)
  x7 = _resblock(n_filters1=8, n_filters2=512)(x)
  x8 = _resblock(n_filters1=8, n_filters2=512)(x)
  x9 = _resblock(n_filters1=8, n_filters2=512)(x)
  x10 = _resblock(n_filters1=8, n_filters2=512)(x)
  x11 = _resblock(n_filters1=8, n_filters2=512)(x)
  x12 = _resblock(n_filters1=8, n_filters2=512)(x)
  x13 = _resblock(n_filters1=8, n_filters2=512)(x)
  x14 = _resblock(n_filters1=8, n_filters2=512)(x)
  x15 = _resblock(n_filters1=8, n_filters2=512)(x)
  x16 = _resblock(n_filters1=8, n_filters2=512)(x)
  x17 = _resblock(n_filters1=8, n_filters2=512)(x)
  x18 = _resblock(n_filters1=8, n_filters2=512)(x)
  x19 = _resblock(n_filters1=8, n_filters2=512)(x)
  x20 = _resblock(n_filters1=8, n_filters2=512)(x)
  x21 = _resblock(n_filters1=8, n_filters2=512)(x)
  x22 = _resblock(n_filters1=8, n_filters2=512)(x)
  x23 = _resblock(n_filters1=8, n_filters2=512)(x)
  x24 = _resblock(n_filters1=8, n_filters2=512)(x)
  x25 = _resblock(n_filters1=8, n_filters2=512)(x)
  x26 = _resblock(n_filters1=8, n_filters2=512)(x)
  x27 = _resblock(n_filters1=8, n_filters2=512)(x)
  x28 = _resblock(n_filters1=8, n_filters2=512)(x)
  x29 = _resblock(n_filters1=8, n_filters2=512)(x)
  x30 = _resblock(n_filters1=8, n_filters2=512)(x)
  x31 = _resblock(n_filters1=8, n_filters2=512)(x)
  x32 = _resblock(n_filters1=8, n_filters2=512)(x)
  
  
  x_all = add([x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,
               x11,x12,x13,x14,x15,x16,x17,x18,x19,x20,
               x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,
               x31,x32])
  
  x = add([x_all, residual])

  x = GlobalAveragePooling2D()(x)
  x = Dense(10, kernel_initializer='he_normal', activation='softmax')(x)
  
  
  model = Model(inputs=inputs, outputs=x)
  return model

model = resnext()

adam = Adam()
model.compile(optimizer=adam, loss='categorical_crossentropy', metrics=['accuracy'])


model.summary()

8
7
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
8
7

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?