鉛直断面図を書く時に下の図のような地形マスクをかけたいと思ったので、 pythonでもやってみました(ネットにもあまり記載されてなかったので、、、)。とりあえず自分の備忘録として、ゆるく書きます。
↓完成イメージはこんなかんじ↓
[http://isotope.iis.u-tokyo.ac.jp/~kei/?IT%20memo/GrADS%20memo#zca6364e](http://isotope.iis.u-tokyo.ac.jp/~kei/?IT memo/GrADS memo#zca6364e)
#1. 使用データ
▶京都大学生存圏研究所(RISH: Research Institute for Sustainable Humanosphere)から取得したメソ数値予報モデルGPV(MSM)
▶NetCDF形式
ちなみに2014/12/17は雪がめっちゃ降った日。
#2. コード
結論、地上気圧が等圧面の気圧よりも低いとき、その気圧面を塗りつぶすというロジック。ただし地上と等圧面データの解像度を合わせること。
v_maskout.py
# -*- coding: utf-8 -*-
import math
import netCDF4
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from mpl_toolkits.basemap import Basemap
class MSM_vertical_distribution:
def __init__(self, t,lat_id):
self.nc_p = netCDF4.Dataset('20141217_P.nc', 'r')
self.nc_s = netCDF4.Dataset('20141217_S.nc', 'r')
#['time']['p']['lat']['lon']
self.sp = self.nc_s['sp'][t][:][:][::2,::2] /100
temp = self.nc_p['temp'][t][:][:][:]
rh = self.nc_p['rh'][t][:][:][:]
u = self.nc_p['u'][t][:][:][:]
v = self.nc_p['v'][t][:][:][:]
uv = np.sqrt(u*u+v*v)
self.temp = temp[:,lat_id,:]
self.rh = rh[:,lat_id,:]
self.u = u[:,lat_id,:]
self.v = v[:,lat_id,:]
self.uv = uv[:,lat_id,:]
def vertical_p(self):
self.p = np.zeros((0,241))
for x in [1000,975,950,925,900,850,800,700,600,500,400,300,250,200,150,100]:
out = np.full((1,241),x)
self.p = np.vstack((self.p,out))
def physical_quantity_calculation(self):
es=6.112*np.exp(17.67*(self.temp-273.15)/(self.temp-29.65))
e=self.rh/100*es
x=0.622*e/(self.p-e)
self.thetae = self.temp+2.8*x #相当温位
self.q=0.622*1000*e/(self.p-0.378*e) #比湿
self.wspd = np.sqrt(self.u * self.u + self.v * self.v) #風速
wdir = np.rad2deg(np.arctan2(self.u,self.v))+180
self.wdir = np.round(wdir,0) #風向
self.qu = self.q * self.u #水蒸気フラックス(東西成分)
self.qv = self.q * self.v #水蒸気フラックス(南北成分)
self.quv = np.sqrt(self.qu * self.qu + self.qv * self.qv) #水蒸気フラックス
def maskout(self):
self.mask_p = np.zeros((0,253,241))
for hpa in [1000,975,950,925,900,850,800,700,600,500,400,300,250,200,150,100]:
mask_hpa = (self.sp - hpa).reshape(1,253,241)
self.mask_p = np.vstack((self.mask_p,mask_hpa))
def draw(self, lat_id, type):
X, Y = np.meshgrid(self.nc_p['lon'][:], self.nc_p['p'][:])
fig = plt.figure(dpi=100)
if type=='temp':
im = plt.contourf(X, Y, self.temp-273.15, cmap=cm.jet)
cmap2=cm.Greys
cmap2.set_over('w', alpha=0)
im2 = plt.contourf(X, Y, self.mask_p[:,lat_id,:],cmap=cmap2,vmin=-100000,vmax=0)
plt.gca().invert_yaxis()
plt.colorbar(im)
plt.title("lat=35.6 気温の鉛直分布\n9:00JST 17DEC2014")
plt.savefig(f'{type}_20141217_v.jpeg', dpi=100)
elif type=='thetae':
im = plt.contourf(X, Y, self.thetae, cmap=cm.jet)
cmap2=cm.Greys
cmap2.set_over('w', alpha=0)
im2 = plt.contourf(X, Y, self.mask_p[:,lat_id,:],cmap=cmap2,vmin=-100000,vmax=0)
plt.gca().invert_yaxis()
plt.ylim(1000,300)
plt.colorbar(im)
plt.title("lat=35.6 相当温位の鉛直分布\n9:00JST 17DEC2014")
plt.savefig(f'{type}_20141217_v.jpeg', dpi=100)
elif type=='quv':
im = plt.contourf(X, Y, self.q , cmap=cm.Blues)
cmap2=cm.Greys
cmap2.set_over('w', alpha=0)
Q = plt.quiver(X[:, ::8],Y[:, ::8], self.qu[:, ::8], self.qv[:, ::8], color='g', width=0.005)
im2 = plt.contourf(X, Y, self.mask_p[:,lat_id,:],cmap=cmap2,vmin=-100000,vmax=0)
plt.gca().invert_yaxis()
plt.ylim(1000,300)
plt.colorbar(im)
plt.title("lat=35.6 水蒸気フラックスおよび比湿の鉛直分布\n9:00JST 17DEC2014")
plt.savefig(f'{type}_20141217_v.jpeg', dpi=100)
if __name__ == '__main__':
vmsm = MSM_vertical_distribution(0,120)
vmsm.vertical_p()
vmsm.physical_quantity_calculation()
vmsm.maskout()
type = input('temp or thetae or quv???')
vmsm.draw(120, type)
ついでに水平分布についても地形マスクかけてみた。
h_maskout.py
# -*- coding: utf-8 -*-
import math
import netCDF4
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from mpl_toolkits.basemap import Basemap
class MSM_horizontal_distribution:
def __init__(self, t,p_id):
self.nc_p = netCDF4.Dataset('20141217_P.nc', 'r')
self.nc_s = netCDF4.Dataset('20141217_S.nc', 'r')
#['time']['p']['lat']['lon']
self.temp = self.nc_p['temp'][t][p_id][:][:]
self.sp = self.nc_s['sp'][t][:][:][::2,::2] /100
self.rh = self.nc_p['rh'][t][p_id][:][:]
self.u = self.nc_p['u'][t][p_id][:][:]
self.v = self.nc_p['v'][t][p_id][:][:]
def physical_quantity_calculation(self, p):
es=6.112*np.exp(17.67*(self.temp-273.15)/(self.temp-29.65))
e=self.rh/100*es
x=0.622*e/(p-e)
self.thetae = self.temp+2.8*x #相当温位
self.q=0.622*1000*e/(p-0.378*e) #比湿
self.wspd = np.sqrt(self.u * self.u + self.v * self.v) #風速
wdir = np.rad2deg(np.arctan2(self.u,self.v))+180
self.wdir = np.round(wdir,0) #風向
self.qu = self.q * self.u #水蒸気フラックス(東西成分)
self.qv = self.q * self.v #水蒸気フラックス(南北成分)
self.quv = np.sqrt(self.qu * self.qu + self.qv * self.qv) #水蒸気フラックス
self.mask_s = self.sp - p #マスクアウトするグリッド
def draw(self, p, type):
X, Y = np.meshgrid(self.nc_p['lon'][:], self.nc_p['lat'][:])
fig = plt.figure(dpi=100)
m = Basemap(projection="cyl", resolution="i", llcrnrlat=30,urcrnrlat=47, llcrnrlon=130, urcrnrlon=150)
m.drawcoastlines(color='black')
m.drawmeridians(np.arange(0, 360, 5), labels=[True, False, False, True],linewidth=0.0)
m.drawparallels(np.arange(-90, 90, 5), labels=[True, False, True, False],linewidth=0.0)
fname1 = 'gadm/gadm36_JPN_1'
m.readshapefile(fname1,'prefectual_bound1', color='k', linewidth=.8)
if type=='temp':
im = plt.contourf(X, Y, self.temp-273.15, cmap=cm.jet)
cmap2=cm.gray
cmap2.set_over('w', alpha=0)
im2 = plt.contourf(X, Y, self.mask_s,cmap=cmap2,vmin=-100000,vmax=0)
plt.title(f"{p}hPaの気温\n9:00JST 17DEC2014")
cb = m.colorbar(im)
plt.savefig(f'{type}_20141217_h.jpeg', dpi=100)
elif type=='thetae':
im = plt.contourf(X, Y, self.thetae, cmap=cm.jet)
cmap2=cm.gray
cmap2.set_over('w', alpha=0)
im2 = plt.contourf(X, Y, self.mask_s,cmap=cmap2,vmin=-100000,vmax=0)
plt.title(f"{p}hPaの相当温位\n9:00JST 17DEC2014")
cb = m.colorbar(im)
plt.savefig(f'{type}_20141217_h.jpeg', dpi=100)
elif type=='quv':
im = plt.contourf(X, Y, self.q , cmap=cm.Blues)
cmap2=cm.Greys
cmap2.set_over('w', alpha=0)
Q = plt.quiver(X[::12, ::12],Y[::12, ::12], self.qu[::12, ::12], self.qv[::12, ::12], color='g', width=0.003)
im2 = plt.contourf(X, Y, self.mask_s,cmap=cmap2,vmin=-100000,vmax=0)
plt.title(f"{p}hPaの水蒸気フラックスおよび比湿\n9:00JST 17DEC2014")
cb = m.colorbar(im)
plt.savefig(f'{type}_20141217_h.jpeg', dpi=100)
if __name__ == '__main__':
hmsm = MSM_horizontal_distribution(0,5)
hmsm.physical_quantity_calculation(850)
type = input('temp or thetae or quv???')
hmsm.draw(850, type)
以上!!!