0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

ksnctf #17 Math II

Posted at

Math II

https://ksnctf.sweetduet.info/problem/17
数学の問題

y^{101} = x

を満たすようなyを求める問題。xは既にわかっている。
式変形してみる。

y^{101} = x \\
101 \log{y} = \log x \\
\log y = \frac{1}{100} \log x \\
y = e^{\frac{1}{100} \log x}

この式を解いてみる。

import math

x = 2748040023408750324411119450523386950660946398855386842074606380418316981389557916980086140301887947706700698930830779678048474531538039134089675000612962004189001422715316147779554460684462041893073445562829316520071658956471592707597247194589999870235577599858641217209525243986680999448565468816434633441308131788183291153809253610695081752296732033298647222814340913466738465892791206393936089466068684809286651197884210187525269355913763182559833600649423167126622527203197940618965341674710993871930168655984019611567024681974446413864111651893113475795042753452042221938667445789706741508160949598322950403760355305740757495122850819958219745478009476321531997688864567881328571570240278649150057863614800304034452842380274161491817926949213762740941829027657311016236224840157689532838274458699038989430527152474540367086746579688987076042252804910459873636444778218434530247647760637770881658596016745610672707638583665201858035977485748775481448417394363801163664632527695106599930657132405666766730530997168969743603771751166591137309462845077320233889570871715682231576283485837079838925927845291565664213349164253238166525895494203520538861102027123057706413048503799598270037162337386882901940037500301040636118696723417952777083334146545991127148023661461455142653367976629308434919237639329808504561590505864983890552051987234096577849288536293631380950881787840319976968198704697701966146561843819563765280293823120028941691560894722032503932540560461794190408016359786029679686957711035845785762377768203676919060935155382104877926736292611130243057909501332528103700463961697932230444978571571548190911155741113324573679444638703192583211952316173122745153529542339170631749363019742630339456502772150867703497326010832217054307087826776870481852284816747574983354077170761286175754243223519482572371717625453405597596790583499145036350302955327521461648262537855645876387858201576107385450844609238327605056916243564458120595540013872075267316304999752934829122583429168665162743589578036716137649553856654996867605565582594039606555708509284616434305172100068285925706963351193710675088846623856567419346569873886366829228933416064828304824833588800700991940600359503453201939139663042787644390810036292415117714919711827630953170559057272633043896443339064006637234499569232762828723613158050896065355005775876910820958296537497557737916521798848004761708690607167573807307291510879396794861418856342383200817566360552405183866698509354047737422523253071467100174078467454351746681775690022510266842064132386305358891086764558955802257688899610117102582837343655907837234028334304769930810792079059216436489942124896722072971246781926084943216581585837400274934104255861076781834022322597318553478829221018993823759479304536464719195824731739557957722610850860725276329731096193041588880149698625007746958307472328762247329346952956782896672291984502790479223886842985800649168009891087704339671376795754679245964575179873102014722210341771266309855717402003098724600141420936602986387680283404929020457247001371544838792904086327642729822000980710278752669990211765608002907900832262843253793831541691706704836397397798869236939393204666502455311086553874765248631328418556164635889080357612074921368044611251307530838475840480894307375072202500636365832958938363048173011687247738236161480446422712858040552310006617829659443118541556912488329721272939472554467384944920030182974546889304443711910957344160175437149714520561879951921970795705645045936350875827028675689840953101114431720413756855193291198455863087675930604549263160397353363504597829924339064422377323361781720524799661393081986371074530022532621955945720583925291264598924971169093688390536693144593482790588893095052569365154072722966434676949346037949263628957665599420417719951187489606010866702371368012263032537375401145460592536898818245350468847674995676417425737655723761467908866712060720593684978725896677308273

y=math.e ** (math.log(x) / 101)
print('{:f}'.format(y))

結果は545783032743912028389476341548725567488.000000となった。
FLAG_545783032743912028389476341548725567488を入力してみたら答えが違う。
今回のxのような大きな数の対数をとったり、101で割ったりしているから丸め誤差で微妙に結果が変わる。

別の方法で解いてみる。
yにしらみつぶしに値を代入してみて等式が成り立つyを見つける方針でとく。
yを0から順番に線形探索するとかなり時間がかかるため、2分探索でyを見つける。

import math 
x = 2748040023408750324411119450523386950660946398855386842074606380418316981389557916980086140301887947706700698930830779678048474531538039134089675000612962004189001422715316147779554460684462041893073445562829316520071658956471592707597247194589999870235577599858641217209525243986680999448565468816434633441308131788183291153809253610695081752296732033298647222814340913466738465892791206393936089466068684809286651197884210187525269355913763182559833600649423167126622527203197940618965341674710993871930168655984019611567024681974446413864111651893113475795042753452042221938667445789706741508160949598322950403760355305740757495122850819958219745478009476321531997688864567881328571570240278649150057863614800304034452842380274161491817926949213762740941829027657311016236224840157689532838274458699038989430527152474540367086746579688987076042252804910459873636444778218434530247647760637770881658596016745610672707638583665201858035977485748775481448417394363801163664632527695106599930657132405666766730530997168969743603771751166591137309462845077320233889570871715682231576283485837079838925927845291565664213349164253238166525895494203520538861102027123057706413048503799598270037162337386882901940037500301040636118696723417952777083334146545991127148023661461455142653367976629308434919237639329808504561590505864983890552051987234096577849288536293631380950881787840319976968198704697701966146561843819563765280293823120028941691560894722032503932540560461794190408016359786029679686957711035845785762377768203676919060935155382104877926736292611130243057909501332528103700463961697932230444978571571548190911155741113324573679444638703192583211952316173122745153529542339170631749363019742630339456502772150867703497326010832217054307087826776870481852284816747574983354077170761286175754243223519482572371717625453405597596790583499145036350302955327521461648262537855645876387858201576107385450844609238327605056916243564458120595540013872075267316304999752934829122583429168665162743589578036716137649553856654996867605565582594039606555708509284616434305172100068285925706963351193710675088846623856567419346569873886366829228933416064828304824833588800700991940600359503453201939139663042787644390810036292415117714919711827630953170559057272633043896443339064006637234499569232762828723613158050896065355005775876910820958296537497557737916521798848004761708690607167573807307291510879396794861418856342383200817566360552405183866698509354047737422523253071467100174078467454351746681775690022510266842064132386305358891086764558955802257688899610117102582837343655907837234028334304769930810792079059216436489942124896722072971246781926084943216581585837400274934104255861076781834022322597318553478829221018993823759479304536464719195824731739557957722610850860725276329731096193041588880149698625007746958307472328762247329346952956782896672291984502790479223886842985800649168009891087704339671376795754679245964575179873102014722210341771266309855717402003098724600141420936602986387680283404929020457247001371544838792904086327642729822000980710278752669990211765608002907900832262843253793831541691706704836397397798869236939393204666502455311086553874765248631328418556164635889080357612074921368044611251307530838475840480894307375072202500636365832958938363048173011687247738236161480446422712858040552310006617829659443118541556912488329721272939472554467384944920030182974546889304443711910957344160175437149714520561879951921970795705645045936350875827028675689840953101114431720413756855193291198455863087675930604549263160397353363504597829924339064422377323361781720524799661393081986371074530022532621955945720583925291264598924971169093688390536693144593482790588893095052569365154072722966434676949346037949263628957665599420417719951187489606010866702371368012263032537375401145460592536898818245350468847674995676417425737655723761467908866712060720593684978725896677308273

left = 0
rigth = 10**100

for i in range (10000):
    mid = (left + rigth) // 2
    ans = pow(mid , 101)
    if ans > x:
        rigth = mid
    elif ans < x:
        left = mid
    elif ans == x:
        print(mid)
        break

rigthの値は予想できるyの値より大きければ問題ない。今回はxが大きすぎてyが簡単に予測できないからrigthを大きな数字にしている。

こうして正解のflagが計算できた。

まとめ

RSA暗号における暗号文の復号をしている??
問題にモジュロ演算が暗号において重要だと書かれているけど使わずに解けた。
次の問題のmath1で重要になってきそう。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?