1
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

【Python】scikit-learnで単・重回帰分析

Posted at

scikit-learnでの単・重回帰分析の実装方法を紹介する。

# sklearn.linear_model.LinearRegression クラスを読み込み
from sklearn import linear_model
import pandas as pd
import numpy as npy
import matplotlib.pyplot as plt
import numpy as np
import requests
import io

clf = linear_model.LinearRegression()

url = 'http://pythondatascience.plavox.info/wp-content/uploads/2016/07/winequality-red.csv'
res = requests.get(url)
df = pd.read_csv(io.BytesIO(res.content), sep=";")
df.to_csv('winequality-red.csv', index=False)

print('データ確認')
wine = pd.read_csv("winequality-red.csv")
print(wine.head())
print('\n')
 
print('単回帰')
# 説明変数に "density (濃度)" を利用
X = wine.loc[:, ['density']].values
print(X)
# 目的変数に "alcohol (アルコール度数)" を利用
Y = wine['alcohol'].values
print(Y)
# 予測モデルを作成
clf.fit(X, Y)
# 回帰係数
print('回帰係数\n',clf.coef_)
# 切片 (誤差)
print('切片\n',clf.intercept_)
# 決定係数
print('決定係数\n',clf.score(X, Y))
print('回帰式\n','[alcohol] = %s × [density] + %s'%(clf.coef_[0], clf.intercept_))
# 散布図
plt.scatter(X, Y)
# 回帰直線
plt.plot(X, clf.predict(X))
plt.show()
print('\n')

print('重回帰\n')
wine_except_quality = wine.drop("quality", axis=1)
X = wine_except_quality.values
print(X)
Y = wine['quality'].values
print(Y)
# 予測モデルを作成
clf.fit(X, Y)

# 偏回帰係数
print('回帰係数\n',pd.DataFrame({"Name":wine_except_quality.columns,
                    "Coefficients":clf.coef_}).sort_values(by='Coefficients'))
parameters = pd.DataFrame({"Name":wine_except_quality.columns,"Coefficients":clf.coef_}).sort_values(by='Coefficients')
print(parameters['Coefficients'].values)
pval = parameters['Coefficients'].values
# 切片 (誤差)
print('切片\n',clf.intercept_)
print('回帰式\n','[quality] = %s × [density] + %s × [chlorides] +\
                 %s × [volatile acidity] + %s × [pH] + \
                 %s × [citric acid] + %s × [total sulfur dioxide] + \
                 %s × [free sulfur dioxide] + %s × [residual sugar] + \
                 %s × [fixed acidity] + %s × [alcohol] + \
                 %s × [sulphates] + %s'\
                    %(pval[0],pval[1],pval[2],pval[3],pval[4],pval[5],pval[6],pval[7],pval[8],pval[9],pval[10], clf.intercept_))
print('\n')

まとめ

今回は、scikit-learnでの単・重回帰分析の実装方法を紹介した。

1
2
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?