Why not login to Qiita and try out its useful features?

We'll deliver articles that match you.

You can read useful information later.

0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

【統計検定準1級対策②】ベルヌーイ分布の確率関数,期待値,分散,母関数の導出過程

Last updated at Posted at 2022-04-09

結論

確率関数

f(x) = 
\left\{\begin{array}{ll}
1-p & x = 0 \\
p & x = 1 \\
\end{array}\right.
=p^x(1-p)^{1-x} \ \ (x = 0,1)
$${f(x) = \left\{\begin{array}{ll} 1-p & x = 0 \\ p & x = 1 \\ \end{array}\right. =p^x(1-p)^{1-x} \ \ (x = 0,1) }$$

期待値,分散

E[X] = p, \ \ V[X]= p(1-p)
$${E[X] = p, \ \ V[X]= p(1-p) }$$

母関数

G(s) = ps+(1-p)
$${G(s) = ps+(1-p) }$$

期待値の導出

期待値の定義:$\displaystyle E[X]=\sum_{x}xf(x)$から,

\begin{align*}
E[X] &= \sum_{x=0}^{1}xf(x)\\
&= 0\cdot(1-p) +1\cdot p\\
&= p\end{align*}
$${\begin{align*} E[X] &= \sum_{x=0}^{1}xf(x)\\ &= 0\cdot(1-p) +1\cdot p\\ &= p\end{align*} }$$

分散の導出

分散は偏差の2乗の期待値 $\left(\displaystyle V[X]=E[(X-\mu)^2]\right)$ だから,

\begin{align*}
V[X] &= E[(X-\mu)^2]\\
&= \sum_{x=0}^{1}(x-p)^2f(x)\\
&= (0-p)^2(1-p) + (1-p)^2p\\
&= p(1-p)\\
\end{align*}
$${\begin{align*} V[X] &= E[(X-\mu)^2]\\ &= \sum_{x=0}^{1}(x-p)^2f(x)\\ &= (0-p)^2(1-p) + (1-p)^2p\\ &= p(1-p)\\ \end{align*} }$$

【別解】
関係式:$V[X]=E[X^2]-(E[X])^2$ から,

\begin{align*}
V[X] &= E[X^2]-(E[X])^2\\
&= \sum_{x=0}^{1}x^2f(x) - p^2\\
&= 0^2\cdot(1-p) + 1^2\cdot p - p^2\\
&= p - p^2 = p(1-p)
\end{align*}
$${\begin{align*} V[X] &= E[X^2]-(E[X])^2\\ &= \sum_{x=0}^{1}x^2f(x) - p^2\\ &= 0^2\cdot(1-p) + 1^2\cdot p - p^2\\ &= p - p^2 = p(1-p) \end{align*} }$$

母関数の導出

確率母関数の定義:$G(s)=E[s^X]$ から,

\begin{align*}
G(s) &= E[s^X]\\
&= \sum_{x=0}^{1}s^xf(x)\\
&= s^0(1-p) + s^1p\\
&= ps+(1-p)
\end{align*}
$${\begin{align*} G(s) &= E[s^X]\\ &= \sum_{x=0}^{1}s^xf(x)\\ &= s^0(1-p) + s^1p\\ &= ps+(1-p) \end{align*} }$$

まとめリンク

【統計検定準1級対策】確率分布の確率関数,期待値,分散,母関数まとめ

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?