3
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

水中画像をディープラーニングで自動生成する

Last updated at Posted at 2019-12-13

背景

dcganで動物や人物の画像を生成する例が多く、他の例が少ないので、dcganで水中画像を生成してみました。

原理

DCGANはCNNとGANを結合するものである。これは、畳み込みネットワークを生成モデルに導入して無監督の訓練を行い、畳み込みネットワークの強い特徴抽出能力を利用してネットワークを生成する学習効果を高める。

code

dcgan network


import torch.nn as nn
# generator net Gを定義
class NetG(nn.Module):
    def __init__(self, ngf, nz):
        super(NetG, self).__init__()
        self.layer1 = nn.Sequential(
            nn.ConvTranspose2d(nz, ngf * 8, kernel_size=4, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(ngf * 8),
            nn.ReLU(inplace=True)
        )
        self.layer2 = nn.Sequential(
            nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 4),
            nn.ReLU(inplace=True)
        )
        self.layer3 = nn.Sequential(
            nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 2),
            nn.ReLU(inplace=True)
        )
        self.layer4 = nn.Sequential(
            nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(inplace=True)
        )
        self.layer5 = nn.Sequential(
            nn.ConvTranspose2d(ngf, 3, 5, 3, 1, bias=False),
            nn.Tanh()
        )

    # 前方伝播
    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = self.layer5(out)
        return out


# discriminator net Dを定義
class NetD(nn.Module):
    def __init__(self, ndf):
        super(NetD, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(3, ndf, kernel_size=5, stride=3, padding=1, bias=False),
            nn.BatchNorm2d(ndf),
            nn.LeakyReLU(0.2, inplace=True)
        )
        self.layer2 = nn.Sequential(
            nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 2),
            nn.LeakyReLU(0.2, inplace=True)
        )
        self.layer3 = nn.Sequential(
            nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 4),
            nn.LeakyReLU(0.2, inplace=True)
        )
        self.layer4 = nn.Sequential(
            nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 8),
            nn.LeakyReLU(0.2, inplace=True)
        )
        self.layer5 = nn.Sequential(
            nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
            nn.Sigmoid()
        )

    # 前方伝播
    def forward(self,x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = self.layer5(out)
        return out

train


import argparse
import torch
import torchvision
import torchvision.utils as vutils
import torch.nn as nn
from random import randint
from model import NetD, NetG

parser = argparse.ArgumentParser()
parser.add_argument('--batchSize', type=int, default=64)
parser.add_argument('--imageSize', type=int, default=96)
parser.add_argument('--nz', type=int, default=100, help='latent z vector')
parser.add_argument('--ngf', type=int, default=64)
parser.add_argument('--ndf', type=int, default=64)
parser.add_argument('--epoch', type=int, default=1000, help='epoch')
parser.add_argument('--lr', type=float, default=0.0002, help='learning rate=0.0002')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
parser.add_argument('--data_path', default='data/', help='train data')
parser.add_argument('--outf', default='imgs/', help='output images and model checkpoints')
opt = parser.parse_args()
# GPUを使用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

#画像読み込み
transforms = torchvision.transforms.Compose([
    torchvision.transforms.Scale(opt.imageSize),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])

dataset = torchvision.datasets.ImageFolder(opt.data_path, transform=transforms)

dataloader = torch.utils.data.DataLoader(
    dataset=dataset,
    batch_size=opt.batchSize,
    shuffle=True,
    drop_last=True,
)

netG = NetG(opt.ngf, opt.nz).to(device)
netD = NetD(opt.ndf).to(device)

criterion = nn.BCELoss()
optimizerG = torch.optim.Adam(netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
optimizerD = torch.optim.Adam(netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))

label = torch.FloatTensor(opt.batchSize)
real_label = 1
fake_label = 0

for epoch in range(1, opt.epoch + 1):
    for i, (imgs,_) in enumerate(dataloader):
        optimizerD.zero_grad()
        imgs=imgs.to(device)
        output = netD(imgs)
        label.data.fill_(real_label)
        label=label.to(device)
        errD_real = criterion(output, label)
        errD_real.backward()
        label.data.fill_(fake_label)
        noise = torch.randn(opt.batchSize, opt.nz, 1, 1)
        noise=noise.to(device)
        fake = netG(noise) 
        output = netD(fake.detach())
        errD_fake = criterion(output, label)
        errD_fake.backward()
        errD = errD_fake + errD_real
        optimizerD.step()

        optimizerG.zero_grad()
        label.data.fill_(real_label)
        label = label.to(device)
        output = netD(fake)
        errG = criterion(output, label)
        errG.backward()
        optimizerG.step()

        print('[%d/%d][%d/%d] Loss_D: %.3f Loss_G %.3f'
              % (epoch, opt.epoch, i, len(dataloader), errD.item(), errG.item()))

    vutils.save_image(fake.data,
                      '%s/fake_samples_epoch_%03d.png' % (opt.outf, epoch),
                      normalize=True)
    torch.save(netG.state_dict(), '%s/netG_%03d.pth' % (opt.outf, epoch))
    torch.save(netD.state_dict(), '%s/netD_%03d.pth' % (opt.outf, epoch))

結果

epoch 100

fake_samples_epoch_100_batch_i_000.png

epoch 300

fake_samples_epoch_300_batch_i_000.png

epoch 500

fake_samples_epoch_500_batch_i_000.png

epoch 800

fake_samples_epoch_800_batch_i_000.png

epoch 1000

fake_samples_epoch_1000_batch_i_000.png

まとめ

生成された画像の品質が良くないです、しかもオーバーフィット現象が現れました、データセットの画像が少なすぎるかもしれないです。

3
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
3
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?