3次元減光マップの利用方法の覚書。
mwdust
from mwdust.util import extCurves
#print(extCurves.avebvsf.keys())
combined19_B= mwdust.Combined19(filter='Landolt B')
combined19_V= mwdust.Combined19(filter='Landolt V')
AB_ARP = 2.206
AV_ARP = 1.675
AG_ARP = 1.323
ABP_ARP= 1.700
def EBV_combined19(l,b,d_kpc):
return combined19_B(l,b,d_kpc)-combined19_V(l,b,d_kpc)
def A_G_BP_RP_combined19(l,b,d_kpc):
AB_ARP = 2.206
AV_ARP = 1.675
AG_ARP = 1.323
ABP_ARP= 1.700
EBV = EBV_combined19(l,b,d_kpc)
EBV_ARP = (AB_ARP-AV_ARP)
ARP = EBV/EBV_ARP
AG = AG_ARP*ARP
ABP = ABP_ARP*ARP
return AG, ABP, ARP
使い方
AG, ABP, ARP = A_G_BP_RP_combined19(337.78435188, -19.96100426, 6.51818111)
EBV_combined19(337.78435188, -19.96100426, 6.51818111)
参考
E(BP-RP)=1.321*E(B-V)
E(B-V)=E(BP-RP)*[A_B/E(BP-RP) - A_V/E(BP-RP)]=E(BP-RP)*(3.151-2.394)=0.757*E(B-V)
# Wang & Chen (2019)
# The Optical to Mid-infrared Extinction Law Based on the APOGEE,
# Gaia DR2, Pan-STARRS1, SDSS, APASS, 2MASS, and WISE Surveys
dustmap (Green)
conda create --name py37_gaia_dr3_try1-dustmaps --clone py37_gaia_dr3_try1-naif
必要なモジュール
numpy
scipy
astropy
h5py
healpy
requests
six
progressbar2 # これが必要
https://stackoverflow.com/questions/44535616/installing-progressbar-python-package
によると、
$ conda install progressbar2
が良いらしい。なお、import する際は "2" の付かない
import progressbar
となる。
$ cd ~/my_libs_3
$ conda install progressbar2
$ git clone https://github.com/gregreen/dustmaps.git
$ python setup.py install --large-data-dir=~/my_libs_3/dustmaps_DATA_directory
$ cd dustmaps
それぞれのdust map をダウンロードする。今はSFDだけ必要。
$ python setup.py fetch --map-name=sfd
running fetch
Fetching map: sfd
Downloading SFD data file to /home/[-----]/my_libs_3/dustmaps_DATA_directory/sfd/SFD_dust_4096_ngp.fits
Downloading data to '/home/[-----]/my_libs_3/dustmaps_DATA_directory/sfd/SFD_dust_4096_ngp.fits' ...
Downloading https://dataverse.harvard.edu/api/access/datafile/2902687 ...
64.0 MiB of 64.0 MiB | 760.9 KiB/s |############################################################################################################################################################| 100% | ETA: 00:00:00Downloading SFD data file to /home/[-----]/my_libs_3/dustmaps_DATA_directory/sfd/SFD_dust_4096_sgp.fits
Downloading data to '/home/[-----]/my_libs_3/dustmaps_DATA_directory/sfd/SFD_dust_4096_sgp.fits' ...
Downloading https://dataverse.harvard.edu/api/access/datafile/2902695 ...
64.0 MiB of 64.0 MiB | 88.2 KiB/s |############################################################################################################################################################| 100% | Time: 0:03:07
64.0 MiB of 64.0 MiB | 685.6 KiB/s |############################################################################################################################################################| 100% | Time: 0:01:36
adrn SFD
conda create --name py37_gaia_dr3_try1-adrn_sfd --clone py37_gaia_dr3_try1-naif
(SFDというディレクトリ名は紛らわしいので、adrn_SFDにする。)
$ cd ~/my_libs_3
$ git clone https://github.com/adrn/SFD.git adrn_SFD
$ cd adrn_SFD