LoginSignup
0
0

More than 3 years have passed since last update.

PRML 演習問題 2.4 (標準)

Last updated at Posted at 2020-06-07

問題

二項分布の平均が(2.11)であることを示せ。これには、正規化条件(2.264)の両辺を $\mu$ で微分し、変形して $n$ の平均を求めよ。同様に、(2.264)の両辺を $\mu$ について2階微分し、二項分布の平均(2.11)も用いて、二項分布の分散の結果(2.12)を証明せよ。

\begin{align*}
\ Bin(~m~ |~N, \mu) = \left(\begin{array}{c} N \\ m \end{array} \right) \mu^m (1 - \mu)^{N - m}
\tag{2.9}
\end{align*}
\begin{align*}
\sum_{m = 0}^N \left(\begin{array}{c} N \\ m \end{array} \right) \mu^m (1 - \mu)^{N - m} = 1
\tag{2.264}
\end{align*}

解答

\begin{align*}
\mathbb{E}[m] = \sum_{m = 0}^N m~Bin(~m~ | ~N, \mu) = N\mu
\tag{2.11}
\end{align*}
\begin{align*}
\ var[m] = N\mu(1 - \mu)
\tag{2.12}
\end{align*}

上式(2.11)及び(2.12)が成り立つことを示せばよい。

問題文に方針が書かれているのでその通りに計算していく。まず(2.264)を $\mu$ で微分してやると、

\begin{eqnarray}
\sum_{m = 0}^N \left(\begin{array}{c} N \\ m \end{array} \right)\{ m \mu^{m - 1} (1 - \mu)^{N - m} - \mu^m (N - m)(1 - \mu)^{N - m - 1}\} & = & 0 \\  
\sum_{m = 0}^N \left(\begin{array}{c} N \\ m \end{array} \right) \mu^{m - 1} (1 - \mu)^{N - m - 1}(m - \mu N) & = & 0\\
\sum_{m = 0}^N m \left(\begin{array}{c} N \\ m \end{array} \right) \mu^m (1 - \mu)^{N - m} & = & \mu N \sum_{m = 0}^N \left(\begin{array}{c} N \\ m \end{array} \right) \mu^m (1 - \mu)^{N - m}
\end{eqnarray}

(2.264)より

\begin{align*}
\sum_{m = 0}^N m \left(\begin{array}{c} N \\ m \end{array} \right) \mu^m (1 - \mu)^{N - m} = \mu N
\tag{2.4.1}
\end{align*}

よって、

\begin{align*}
\mathbb{E}[m] = N\mu
\tag{2.11}
\end{align*}

また、(2.4.1)をさらに $\mu$ で微分すると、

\begin{eqnarray}
\sum_{m = 0}^N m^2 \left(\begin{array}{c} N \\ m \end{array} \right) \mu^m (1 - \mu)^{N - m} & = & \mu N(1 - \mu) + \mu N \sum_{m = 0}^N m \left(\begin{array}{c} N \\ m \end{array} \right) \mu^m (1 - \mu)^{N - m}\\
\mathbb{E}[m^2] & = & \mu N - \mu^2 N + \mu^2 N^2
\tag{2.4.2}
\end{eqnarray}

(2.11)と(2.4.2)から、

\begin{eqnarray}
\ var[m] & = & \mathbb{E}[m^2] - (\mathbb{E}[m])^2\\
& = & \mu N - \mu^2 N + \mu^2 N^2 - \mu^2 N^2\\
& = & N \mu(1 - \mu)
\end{eqnarray}

よって(2.12)が示された。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0