9
6

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

機械学習・ニューラルネットワークなどの年表

Last updated at Posted at 2021-07-08

趣味でまとめている年表です.参考になれば幸いです.気が向いたときに元論文へのリンクなども追加しています.項目の分け方は著者の趣味です.

大規模言語モデルは別の表にしています.

機械学習,ニューラルネットワークなどの年表

機械学習 ニューラルネットワーク その他
1700s ベイズ定理(Bayes)
1795 最小二乗法 (Gauss)
1865 Clausius' entropy (Clausius)
1870s Boltzmann's entropy (Boltzmann)
1873 ゴルジ染色 (Golgi)
1888 Neuron doctrine (Cajal)
1901 PCA (Pearson)
1905 Random walk (Pearson) ブラウン運動 (Einstein)
1906 Receptive field (Sherrington)
1912-22 最尤推定 (Fisher)
1920 Ising model (Lenz)
1938 Receptive field (Hartline)
Turing's BombeがEnigma解読
1943 Neural network (Neuron) model (McCulloch and Pitts)
1946 ENIAC完成・使用開始
1948 Shannon's entropy (Shannon) Jeffress model (Jeffress)
1949 Hebbian Learning (Hebb)
1950s Checker (Samuel)
1950 Turing test
1951 SNARC迷路を解く (Minsky and Edmons)
1952 Hodgkin Huxley model (Hodgkin and Huxley)
1956 Artificial Intelligence (Dartmouth meeting)
1957 Bellman equation (Bellman) Perceptron (Rosenblatt)
1957 k-means published in 1980 (Lloyd)
1959 Machine learning (Samuel) V1 (Hubel and Wiesel)
1960 Delta rule (Widrow and Hoff)
1966 Hidden Markov Model (Baum and Petrie) Chatbot Eliza (Weizenbaum)
1967 (Online) k-means (MacQueen)
1969 Perceptrons (Minski and Papert)
Rectified linear (Fukushima)
1971 a deep GMDH network with 8 layers (Ivakhnenko)
1973 Self organizing map (SOM) (von der Malsberg)
1977 EM Algorithm (Dempster et al.)
1980 Neocognitron (Fukushima) PacMan
1980 SOM (Amari) MS-DOS
1982 Hopfield Network (Hopfield)
Vision (Marr)
1983 SOM (Kohonen)
1986 Backpropagation (Rumelhart, Hinton, Williams)
Boltzmann Machine (Ackley, Hinton, Seinowski)
1988 Autoencoder (Baldi and Hornik)
Autoencoder (Bourland and Lecun)
1989 LeNet (LeCun)
1989 Neurogammon (Tesauro)
1994 ICA (Pierre)
1995 Positive Matrix Factorization (Paatero) TD-gammon (Tesauro)
SVM (Vapnik)
1996
Sparse Coding (Olshausen)
1997 LSTM (Hochreiter and Schmidhuber) Deep Blue beat Kasparov.
Logistello beat Murakami.
1998 Kernel PCA (Scholkopf et al.)
Quantum annealing
1999 Non-Negative Factorization (Lee) Aibo (Sony)
2001 Topographic ICA (Hyvarinen et al.) Echo state network (Jaeger)
2002 Liquid state machine (Maass) Roomba (iRobot)
2003 Izhikevich model (Izhikevich)
2006 IVA (Kim et al.) Deep Belief Network (Hinton and Salakhutdinov)
Monte Calro Tree Search (Coulom)
2007 Stacked Autoencoder (Bengio et al.)
2010 Rectufied linear (Nair et al.)
2012 AlexNet (Krizhevsky, Sutskever, Hinton)
Dropout (Hinton et al.)
2013 Variational Autoencoder (Kingma and Welling)
2014 GoogLeNet (Szegedy et al.)
VGG (Simonyan and Zisserman)
2015 ResNet (He et al.)
Deep Q network (Mnih et al.)
2016 Xception (Chollet)
AlphaGo (Silver et al.)
2017 Squeeze-and-Excitation Networks (Hu et al.)
2017 Transformer (Vaswani et al.)
AlphaGo Zero (Silver et al.)
2018 AlphaZero (Silver et al.)
R2D2
BERT
AlphaFold 1
2019 EfficientNet (Tan and Le)
AlphaStar
MuZero (Schrittwieser et al.)
2020 Vision Transformer
Diffusion model (Ho et al.)
2021 EfficientNetV2 (Tan and Le)
MLP-Mixer NovelAI (Anlatan)
Latent Diffusion
2022 Gato DALL-E 2 (OpenAI)
Midjourney (Midjourney)
Stable Diffusion
ChatGPT (OpenAI)
2023 RT2 (Google)
Gemini (Google)
2024 Copilotキー搭載を発表 (Microsoft)
Apple Intelligenceを発表 (Apple)

大規模言語モデル

年月 LLM
2018/6 GPT (OpenAI)
2018/10 BERT (Google)
2019/2 GPT-2 (OpenAI)
2020/5 GPT-3 (OpenAI)
2021/12 Claude (Anthropic)
2022/1 LaMDA (Google)
2022/4 PaLM (Google)
2022/3 GPT-3.5 (OpenAI)
2023/2 LLaMA (Meta)
2023/3 GPT-4 (OpenAI)
2023/5 PaLM (Google)
2023/7 LLama2 (Meta)
Claude2 (Anthropic)
2023/11 Claude 2.1 (Anthropic)
Grok-1 (x.AI)
2023/12 Gemini 1.0 (Google)
Mixtral 8x7B (Mistral AI)
Phi-2 (Microsof)
2024/2 Gemini 1.5 (Google)
Gemma (Google)
2024/3 Claude3 (Anthropic)
2024/4 LLama3 (Meta)
Mixtral 8x22B (Mistral AI)
Phi3 (Microsof)
2024/5 Deepseek V2 (DeepSeek)
2024/6 Qwen2 (Alibaba)
Nemotron-4 (NVIDIA)
2024/7 LLama3.1 (Meta)
Gemma2 (Google)
9
6
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
9
6

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?