25
19

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

M2Detを試してみた

Last updated at Posted at 2019-03-14

はじめに

M2Detというニューラルネットワークが定義され、2019年3月1日にソースが公開されました。(Paperデーター)
という事で早速試してみました。

環境

OS Ubuntu 14.04.6
GPU Nvidia GeForce 2080Ti × 2
CPU Intel Core i7-8700

事前にインストールしておくもの

Package Version
CUDA(apt) 10.1
Python(apt) 3.6
Cython(pip) 0.29.6
opencv-python(pip) 3.4.5.20
tqdm(pip) 4.31.1
tensorflow(pip) 1.13.1
addict(pip) 2.2.0
torch-nightly(pip) 1.0.0
torchvision-nightly(pip) 0.2.1
anaconda(DL) 3.0

GithubにあるREADMEではanacondaに同封されているpythonにインストールするよう書かれていますが、今回はpython3.6での動作検証になります。
python3.6での検証のため、python実行の際にバージョン指定で実行する必要があります。

pytorchをインストールしておく必要がありますが、2019年3月5日時点にあるパッケージでは動作しませんでした。
"THCudaCheck FAIL file=/pytorch/aten/src/THC/THCGeneral.cpp line=XXX error=11"
というエラーで停止します。

調べると2080Ti+cuda10+pytorchでは正常動作しないようなのでhttps://github.com/datapink/robosat.pink/issues/3 にしたがってtorch-nightlyをインストールしました。
(1080tiでは生じていないエラーのようでした。https://discuss.pytorch.org/t/a-error-when-using-gpu/32761)

事前準備

Githubにリリースされているソース のREADMEによると事前にpythorch版ssdのdatasetで用いたvggモデルが必要なようなのでダウンロードします。

wget https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth

また、COCOのannotation、imageをダウンロードします。。
COCOのdataseを公式から取得します。

cd
mkdir data
mkdir data/coco
mkdir data/coco/images
cd data/coco/images
wget http://images.cocodataset.org/zips/train2014.zip
wget http://images.cocodataset.org/zips/val2014.zip
wget http://images.cocodataset.org/zips/test2014.zip
wget http://images.cocodataset.org/zips/test2015.zip
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
wget http://images.cocodataset.org/zips/test2017.zip
unzip train2014.zip
unzip train2017.zip
unzip val2014.zip
unzip val2017.zip
unzip test2014.zip
unzip test2015.zip
unzip test2017.zip
rm *.zip
cd ..
wget http://images.cocodataset.org/annotations/annotations_trainval2014.zip
wget http://images.cocodataset.org/annotations/image_info_test2014.zip
wget http://images.cocodataset.org/annotations/image_info_test2015.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
unzip annotations_trainval2014.zip
unzip image_info_test2014.zip
unzip image_info_test2015.zip
unzip annotations_trainval2017.zip
rm *.zip
cd annotations
wget http://datasets.d2.mpi-inf.mpg.de/hosang17cvpr/coco_minival2014.tar.gz
tar xfz coco_minival2014.tar.gz
rm coco_minival2014.tar.gz

M2Detを動かしてみる

M2DetのソースをGithubからクローンします。

git clone https://github.com/qijiezhao/M2Det.git
cd M2Det

make.shを変更します。

CUDA_PATH=/usr/local/cuda/

python build.py build_ext --inplace

         ↓

CUDA_PATH=/usr/local/cuda/
PATH=${PATH}:/home/atluser/anaconda3/bin
python3.6 build.py build_ext --inplace

data/coco.pyを環境に合わせて修正します。
line:31

self.cache_path = os.path.join(self.data_path, 'coco_cache')
         ↓
self.cache_path = os.path.join(self.data_path, 'coco')

make.shを実行します。

sh make.sh

m2det512_vgg.pthをダウンロードします。
このモデルは作成者のGoogleドライブ にありますので、ターミナル上ではなくGUIでダウンロードします。
AWSなどSSHで接続している場合はscpなどを使ってクライアントPCからコピーします。

mkdir weights
cd weights
"scpやmvでm2det512_vgg.pthを置く"

vgg16_reducedfc.pthも同じ場所におきます。

mv ~/vgg16_reducedfc.pth ~/M2Det/weights/

動作確認

動作確認をします。

python3.6 demo.py -c=configs/m2det512_vgg.py -m=weights/m2det512_vgg.pth --show

画像が問題なく表示されれば動作確認は終了です。

PKLファイルを作成する

学習するにあたって、pklというファイルを作成する必要があり、これは一度検知をかけたファイルの結果を保存するようなファイルのようです。
そこでtest.pyを実行します。

python3.6 test.py -c=configs/m2det512_vgg.py -m=weights/m2det512_vgg.pth

~/data/coco配下にpklファイルが作成されます。

学習をしてみる

学習方法です。
READMEにあるtrain.pyを動かします。

まずconfigファイルを修正します。
configファイルはconfig/m2det512_vgg.pyになります。
line30あたりにバッチサイズを指定するところがあるのでそこを修正します。

per_batch_size = 16,
    ↓
per_batch_size = 4,

train.pyを実行します。

CUDA_VISIBLE_DEVICES=0,1 python3.6 train.py -c=configs/m2det512_vgg.py --ngpu 2 -t True

以上で学習が実行されます。

次回以降configあたりの調査をしようと思います。

外部カメラデバイスで動作させてみる(2019年3月14日にREADMEが更新されましたので記載します)

※demo.pyをupdateする必要があります。
外部カメラデバイスでM2Detを動作させてみます。

python3.6 demo.py -c=configs/m2det512_vgg.py -m=weights/m2det512_vgg.pth --show --cam=0

--cam の引数にカメラデバイスIDを指定すれば動作します。

25
19
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
25
19

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?