18
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

EXLAとは?

導入するだけで、Nxの計算がとにかく速くなります
Livebookからでも使用できます
GPUもcudaのドライバなど導入されていれば利用する事ができます
実際に使ってみます

EXLAのドキュメント

image.png

Livebookで使ってみる

Notebook dependencies and setupの欄にEXLAの記述を追加する事で利用できる

Mix.install(
  [
    {:exla, "~> 0.2"}
  ],
  config: [
    nx: [default_backend: EXLA.Backend]
  ]
)

実行結果

Nxで作成した行列がEXLA.Backendで作成したものになっている(赤線部分)

image.png

デモ

以降は、Livebookで実行しながらデモします

exla bench

Mix.install(
  [
    {:nx, "~> 0.3.0"},
    {:exla, "~> 0.3.0"},
    {:kino_vega_lite, "~> 0.1.3"}
  ],
  config: [
    nx: [
      default_backend: EXLA.Backend,
      default_defn_options: [compiler: EXLA]
    ]
  ],
  system_env: [
    XLA_TARGET: "cpu"
  ],
  # XLA_TARGETの変更で、exlaを再コンパイルしたい時はtrueにする
  force: true
)

Section

Nx.add(Nx.tensor([1]), Nx.tensor([1]))
Nx.tensor([1, 2, 3], backend: {Nx.BinaryBackend, device: :cpu})
tensor_dot = fn a, b ->
  c = Nx.dot(a, b)
  IO.inspect(c)
end

measure_ecec_time = fn a, b ->
  {exec_time, _} = :timer.tc(tensor_dot, [a, b])
  exec_time / 1_000_000
end

EXLAを使わない時の計算

a = Nx.eye(200, backend: {Nx.BinaryBackend, device: :cpu})
b = Nx.eye(200, backend: {Nx.BinaryBackend, device: :cpu})
time_binary = measure_ecec_time.(a, b)

EXLA使用時の計算時間

a = Nx.eye(200)
b = Nx.eye(200)
time_exla = measure_ecec_time.(a, b)

速度比較

time_binary / time_exla
measure_bin = fn tensor_size ->
  a = Nx.eye(tensor_size, backend: {Nx.BinaryBackend, device: :cpu})
  b = Nx.eye(tensor_size, backend: {Nx.BinaryBackend, device: :cpu})
  time_binary = measure_ecec_time.(a, b)
end

x = 10..100//10

y1 = Enum.map(x, measure_bin)

VegaLite.new(width: 600, height: 600)
|> VegaLite.data_from_values(x: x, y: y1)
|> VegaLite.mark(:line, tooltip: true)
|> VegaLite.encode_field(:x, "x", type: :quantitative)
|> VegaLite.encode_field(:y, "y", type: :quantitative)
measure_exla = fn tensor_size ->
  a = Nx.eye(tensor_size)
  b = Nx.eye(tensor_size)
  time_binary = measure_ecec_time.(a, b)
end

x2 = 100..1000//100

y2 = Enum.map(x2, measure_exla)

VegaLite.new(width: 600, height: 600)
|> VegaLite.layers([
  VegaLite.new()
  |> VegaLite.data_from_values(x: x, y: y1)
  |> VegaLite.mark(:line, tooltip: true)
  |> VegaLite.encode_field(:x, "x", type: :quantitative)
  |> VegaLite.encode_field(:y, "y", type: :quantitative),
  VegaLite.new()
  |> VegaLite.data_from_values(x: x2, y: y2)
  |> VegaLite.mark(:line, tooltip: true)
  |> VegaLite.encode_field(:x, "x", type: :quantitative)
  |> VegaLite.encode_field(:y, "y", type: :quantitative)
])

EXLA使用しない場合とEXLA使用時(CPU)の速度比較

image.png
y2=[7.15e-4, 0.003077, 0.012146, 0.038081, 0.064272, 0.125242, 0.204559, 0.323119, 0.413457, 0.567912]

GPUを使う場合

GPUを使う場合は、EXLAが利用するXLAのターゲットの種類を設定することで利用できる。GPUのドライバーの導入も必要。
nvidiaのGPUを使う場合は、cuda111を指定する

Mix.install(
  [
    {:nx, "~> 0.3.0"},
    {:exla, "~> 0.3.0"},
    {:kino_vega_lite, "~> 0.1.3"}
  ],
  config: [
    nx: [
      default_backend: EXLA.Backend,
      default_defn_options: [compiler: EXLA]
    ]
  ],
  system_env: [
    XLA_TARGET: "cuda111"
  ],
  # XLA_TARGETの変更で、exlaを再コンパイルしたい時はtrueにする
  force: true
)

EXLA CPUとCUDAの速度比較

image.png

検証環境

OS Windows11
WSL2にubuntu 22.04をインストール
GPUのドライバー等の導入方法は、次の記事に記載 【2022/10月版】WSL2のElixir、NxでGPUを使ってみた

18
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
18
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?