1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

二次システムの自由振動の一般解

Posted at

概要

二次システムの自由振動,過減衰の応答を計算します.

二次システム

G(s) = A \frac{w_n^2}{s^2 +2 \zeta wn s+w_n^2} 

が二次システムです.$A$は振幅で一般的なゲインです.
ステップ入力した場合,最終的に$A$に収束します.

\frac{Y(s)}{U(s)} = A \frac{w_n^2}{s^2 +2 \zeta w_n s+w_n^2} \\
\therefore (s^2 +2 \zeta w_n s+w_n^2)Y(s) = A w_n^2 U(s)\\
\therefore y''(t) +2 \zeta w_n y(t)'+w_n^2y(t) = A w_n^2 u(t)\\

を必ず満たす.

自由振動

u=0,で初期値が0でないときの応答を求めます.

y''(t) +2 \zeta w_n y(t)'+w_n^2y(t) = 0\\

を満たす.

y(t) =  Be^{-\zeta w_n t}sin(\sqrt{1-\zeta^2}w_nt+\phi)

が解になる,$ B,\phi$が任意定数

検証

y'(t) =  Be^{-\zeta w_n t}sin(\sqrt{1-\zeta^2}w_nt+\phi) (-\zeta w_n)\\
+  Be^{-\zeta w_n}cos(\sqrt{1-\zeta^2}w_nt+\phi) \sqrt{1-\zeta^2}w_n

y''(t) =  Be^{-\zeta w_n t}sin(\sqrt{1-\zeta^2}w_nt+\phi) (-\zeta w_n)^2\\
-  Be^{-\zeta w_n}sin(\sqrt{1-\zeta^2}w_nt+\phi) (1-\zeta^2)w_n^2\\

+ Be^{-\zeta w_n t}cos(\sqrt{1-\zeta^2}w_nt+\phi) (-\zeta w_n)\sqrt{1-\zeta^2}w_n\\
+ Be^{-\zeta w_n}cos(\sqrt{1-\zeta^2}w_nt+\phi) (-\zeta w_n)\sqrt{1-\zeta^2}w_n\\

= Be^{-\zeta w_n t}sin(\sqrt{1-\zeta^2}w_nt+\phi) 
\{\zeta^2 w_n^2 - (1-\zeta^2)w_n^2

\}
+\\
 Be^{-\zeta w_n t}cos(\sqrt{1-\zeta^2}w_nt+\phi) 
\{
2(-\zeta w_n)\sqrt{1-\zeta^2}w_n
\}

微分方程式に代入し

y''(t) +2 \zeta w_n y(t)'+w_n^2y(t) \\
=
 Be^{-\zeta w_n t}sin(\sqrt{1-\zeta^2}w_nt+\phi) 
\{ \zeta^2 w_n^2 - (1-\zeta^2)w_n^2
+2 \zeta w_n (-\zeta w_n) +w_n^2
\}\\
+
 Be^{-\zeta w_n t}cos(\sqrt{1-\zeta^2}w_nt+\phi) 
\{
2(-\zeta w_n)\sqrt{1-\zeta^2}w_n
+2 \zeta w_n \sqrt{1-\zeta^2}w_n
\}\\
=0

となり,成立する

初期値

y(0) = Bsin(\phi)\\
y'(0)  =  B w_n sin(\phi + \pi -tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta} )

この二つの式を$ B,\phi$に対し解くことで,解が得られる.

B=\frac{y(0)}{sin \phi}

代入し

y'(0)  =  \frac{y(0)}{sin \phi}  w_n sin(\phi + \pi -tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta} )\\

\therefore
\frac{y'(0)}{y(0)w_n}=cos(\pi -tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta} )+\frac{sin(\pi -tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta} )}{tan \phi}

よって,

tan \phi = \frac{sin(\pi -tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta} )}{\frac{y'(0)}{y(0)w_n}-cos(\pi -tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta} )}

で計算できる

B=\frac{y(0)}{sin \phi}

で完了

ただし,$y(0) = 0$だと0割が発生するので,場合分けがいる
まぁ,$\phi = 0$に確定するので簡単

B= \frac{y'(0)}{   w_n sin( \pi -tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta} )}

で完了

Scilabで検証

csimと理論解の比較を行った

hikaku.png
ちゃんと同じになった.


clear();
for i = 1:10 do
    close
end

zeta = 0.5
wn = 3
a = 1

A=[-2*zeta*wn -1*wn^2
1 0]

B=[a*wn^2
0]

C=[0 1]
D=[0]

x0=[1
3]

sl = syslin('c',A,B,C,D,x0);


t=0:0.01:10;
u=zeros(1,length(t))
y=csim(u,t,sl)

beta1 = %pi - atan(sqrt(1-zeta^2)/zeta);

if x0(2)==0 then
    phi = 0
    b=x0(1)/wn/sin(beta1)
else
    phi = atan(sin(beta1)/(x0(1)/x0(2)/wn - cos(beta1) ));
    b=x0(2)/sin(phi);
end


y2= diag(b*exp(-zeta*wn*t')*sin(sqrt(1-zeta^2)*wn*t +phi) )
clf();
plot(t,y);
figure();
plot(t,y2);

自由振動まとめ


y(t) =  Be^{-\zeta w_n t}sin(\sqrt{1-\zeta^2}w_nt+\phi)

初期状態に対し$B,\phi$を次の式で調整

tan \phi = \frac{sin(\pi -tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta} )}{\frac{y'(0)}{y(0)w_n}-cos(\pi -tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta} )}\\
B=\frac{y(0)}{sin \phi}

$y(0) = 0$の時のみ例外的に

\phi = 0\\
B= \frac{y'(0)}{   w_n sin( \pi -tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta} )}

さらに,$y'(t)$の方を観測できる場合は

y'(t) =  Bw_ne^{-\zeta w_n t}sin(\sqrt{1-\zeta^2}w_nt+\phi + \pi -tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta}) \\

となる.
こちらも,scilabで検証したが問題なしだった

1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?