0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

二次方程式の解の公式

Posted at

はじめに

二次方程式の解の公式の導き方を忘れかけていたのでメモ

二次方程式

$x$に関する方程式

ax^2+bx+c=0\tag{1}

ただし

a\ne0\tag{2}

を二次方程式という.

解の公式の導出

$(2)$より,$(1)$の両辺を$a$で割れるので,

x^2+\frac{b}{a}x+\frac{c}{a}=0\tag{3}

ここで,

\begin{align}
d&=\frac{b}{a}\tag{4}\\
e&=\frac{c}{a}\tag{5}
\end{align}

とすることで,

x^2+dx+e=0\tag{6}

となり,二次の係数が消える.
次に,ある数$f$を用いて

\begin{align}
y&=x+f\tag{7}\\
g&=y^2\tag{8}
\end{align}

とすると,

\begin{align}
y^2-g&=0\\
(x+f)^2-g&=0\\
x^2+2fx+f^2-g&=0\tag{9}
\end{align}

$(6)$と$(9)$の各係数が等しいとすると,

\begin{align}
d&=2f\tag{10}\\
e&=f^2-g\tag{11}
\end{align}

$(10)$より,

f=\frac{d}{2}\tag{12}

これと$(4)$より,

\begin{align}
f&=\frac{d}{2}\\
&=\frac{b}{2a}\tag{13}
\end{align}

また,$(11)$より,

g=f^2-e\tag{14}

これと$(13)$より,

\begin{align}
g&=f^2-e\\
&=\left(\frac{b}{2a}\right)^2-e\\
&=\frac{b^2}{4a^2}-e\tag{15}\\
\end{align}

これと$(5)$より,

\begin{align}
g&=\frac{b^2}{4a^2}-e\\
&=\frac{b^2}{4a^2}-\frac{c}{a}\\
&=\frac{b^2-4ac}{4a^2}\tag{16}
\end{align}

ここで,$(8)$を$y$について解くと,

y=\pm\sqrt{g}\tag{17}

これと$(16)$より,

\begin{align}
y&=\pm\sqrt{g}\\
&=\pm\sqrt{\frac{b^2-4ac}{4a^2}}\\
&=\pm\frac{\sqrt{b^2-4ac}}{2a}\tag{18}
\end{align}

これと$(7)$より,

\begin{align}
x+f&=\pm\frac{\sqrt{b^2-4ac}}{2a}\\
x&=-f\pm\frac{\sqrt{b^2-4ac}}{2a}\tag{19}
\end{align}

これと$(13)$より,

\begin{align}
x&=-\frac{b}{2a}\pm\frac{\sqrt{b^2-4ac}}{2a}\\
&=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
\end{align}

終わり

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?