0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

enzyme.datからEC numberとUniprot entryの対応表を作る

Last updated at Posted at 2020-05-16

enzyme.datとは

ENZYMEという酵素の命名に関する情報のデータベースファイルのこと
ファイルには

ID  Identification                         (Begins each entry; 1 per entry)
DE  Description (official name)            (>=1 per entry)
AN  Alternate name(s)                      (>=0 per entry)
CA  Catalytic activity                     (>=1 per entry)
CF  Cofactor(s)                            (>=0 per entry)
CC  Comments                               (>=0 per entry)
PR  Cross-references to PROSITE            (>=0 per entry)
DR  Cross-references to Swiss-Prot         (>=0 per entry)

といった情報が格納されている。

enzyme.datの中身(一部)

ID   1.1.1.1
DE   Alcohol dehydrogenase.
AN   Aldehyde reductase.
CA   (1) A primary alcohol + NAD(+) = an aldehyde + NADH.
CA   (2) A secondary alcohol + NAD(+) = a ketone + NADH.
CF   Zn(2+) or Fe cation.
CC   -!- Acts on primary or secondary alcohols or hemi-acetals with very broad
CC       specificity; however the enzyme oxidizes methanol much more poorly
CC       than ethanol.
CC   -!- The animal, but not the yeast, enzyme acts also on cyclic secondary
CC       alcohols.
PR   PROSITE; PDOC00058;
PR   PROSITE; PDOC00059;
PR   PROSITE; PDOC00060;
DR   P07327, ADH1A_HUMAN;  P28469, ADH1A_MACMU;  Q5RBP7, ADH1A_PONAB;
DR   P25405, ADH1A_SAAHA;  P25406, ADH1B_SAAHA;  P00327, ADH1E_HORSE;

研究の一環で酵素の機能によって分類されたEC number(上記のIDに該当)と
各タンパク質のUniprot entry(上記のDRに該当)の対応表を作る必要があったので、
enzyme.datからIDDR、EC numberの説明(上記のDEに該当)を抽出、関連付けしたテーブルを作成することにした。

必要なもの

使用するpythonモジュール

  • pandas(DataFrameの作成に使用)

やること

行頭がID, DE, DRで始まる行をそれぞれ取り出してリストを作成。
DataFrameでテーブルを作成し、csvファイルとして書き出す。

やったこと

ファイルを開く

path = "enzyme.dat"
with open(path) as f:
    s = f.readlines() # 行ごとで区切って、リストとして読み込み
    s = s[24:] # 頭の説明部分は除外

idリストの作成

id_list = []
for i in s:
    if i.startswith("ID  "): # ID   で始まる文字列を探す
        x = i[5:-1] # "ID   "以降の文字列を取得
        id_list.append(x) # リストに追加
id_list[:10]

['1.1.1.1',
 '1.1.1.2',
 '1.1.1.3',
 '1.1.1.4',
 '1.1.1.5',
 '1.1.1.6',
 '1.1.1.7',
 '1.1.1.8',
 '1.1.1.9',
 '1.1.1.10']

descriptionリストの作成

DEとDRは2行以上存在する可能性があるので一行後の内容を参照しながら要素を追加していく
行頭が"DE"でなくなるまで文字列を追加し続け、DEの最終行まで到達したらリストに追加する。

description_list = []
name = ""
for i in range(len(s)):
    if s[i].startswith("DE   "):
        x = s[i][5:-1]
        name += x
        if not s[i + 1].startswith("DE   "):
            description_list.append(name)
            name = ""
description_list[:10]

['Alcohol dehydrogenase.',
 'Alcohol dehydrogenase (NADP(+)).',
 'Homoserine dehydrogenase.',
 '(R,R)-butanediol dehydrogenase.',
 'Transferred entry: 1.1.1.303 and 1.1.1.304.',
 'Glycerol dehydrogenase.',
 'Propanediol-phosphate dehydrogenase.',
 'Glycerol-3-phosphate dehydrogenase (NAD(+)).',
 'D-xylulose reductase.',
 'L-xylulose reductase.']

accession列の作成

accession_list = []
name = ""
for i in range(len(s)):
    if s[i].startswith("DR   "):
        x = s[i][5:-1]
        name += x
        if not s[i + 1].startswith("DR   "):
            accession_list.append(name)
            name = ""

accession_list[1]

'Q6AZW2, A1A1A_DANRE;  Q568L5, A1A1B_DANRE;  Q24857, ADH3_ENTHI ;Q04894, ADH6_YEAST ;  P25377, ADH7_YEAST ;  O57380, ADH8_PELPE ;Q9F282, ADHA_THEET ;  P0CH36, ADHC1_MYCS2;  P0CH37, ADHC2_MYCS2;P0A4X1, ADHC_MYCBO ;  P9WQC4, ADHC_MYCTO ;  P9WQC5, ADHC_MYCTU ;P27250, AHR_ECOLI  ;  Q3ZCJ2, AK1A1_BOVIN;  Q5ZK84, AK1A1_CHICK;O70473, AK1A1_CRIGR;  P14550, AK1A1_HUMAN;  Q9JII6, AK1A1_MOUSE;P50578, AK1A1_PIG  ;  Q5R5D5, AK1A1_PONAB;  P51635, AK1A1_RAT  ;Q6GMC7, AK1A1_XENLA;  Q28FD1, AK1A1_XENTR;  Q9UUN9, ALD2_SPOSA ;P27800, ALDX_SPOSA ;  P75691, YAHK_ECOLI ;'

あとはこの3つのリストを使ってDataFrameを作ればよいはずなのだが、
作成したリストの要素の数を比較すると

len(id_list), len(description_list), len(accession_list)

(7876, 7876, 5001)

accession_listだけ数が合わない

なぜaccession_listだけ数が合わない?

datファイルをよく確認すると

//
ID   1.14.13.42
DE   Deleted entry.
//
ID   1.14.13.43
DE   Questin monooxygenase.
AN   Questin oxygenase.
CA   Questin + NADPH + O(2) = demethylsulochrin + NADP(+).
CC   -!- The enzyme cleaves the anthraquinone ring of questin to form a
CC       benzophenone.
CC   -!- Involved in the biosynthesis of the seco-anthraquinone (+)-geodin.
//

といった感じで、DRが存在しないIDが結構ある。
そこで

# PR, CC, DE, CA, CF を使ってDRが付いていない酵素を探す
for name in ("PR", "CC", "DE", "CA", "CF"):
    print("start", name)
    no_dr_enzyme = []
    for i in range(len(s)):
        if s[i].startswith(f"{name}   "):
            if s[i + 1].startswith("//"):
                no_dr_enzyme.append(i)
    x = 1
    for i in no_dr_enzyme:
        s.insert(i + x, "DR   none ;\n")
        x += 1

としてDRが存在しないIDには "DR none"という行を付け足しておく。

再度accession_listを作成して要素数を比較すると

len(id_list), len(description_list), len(accession_list)
(7876, 7876, 7876)

数が揃ったのでDataFrameが作成可能となる

DataFrameを作ってcsvファイルに書き出し

import pandas as pd

df = pd.DataFrame(
    {"ID": id_list, "Description": description_list, "Accession": accession_list}
)

# csvファイルとして書き出す
df.to_csv("enzyme.csv", index=False)

完成したスクリプト(make_enzyme_table.py)

#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# make_enzyme_table.py
#

import pandas as pd

def main():
    # ファイルの読み込み
    path = "enzyme.dat"

    with open(path) as f:
        s = f.readlines()
        s = s[24:]
        print(s[:10])

    # id列の作成
    id_list = []
    for i in s:
        if i.startswith("ID  "):
            x = i[5:-1]
            id_list.append(x)

    # description列の作成
    description_list = []
    name = ""
    for i in range(len(s)):
        if s[i].startswith("DE   "):
            x = s[i][5:-1]
            name += x
            if not s[i + 1].startswith("DE   "):
                description_list.append(name)
                name = ""

    # PR, CC, DE, CA, CF を使ってDRが付いていない酵素を探して補完
    for name in ("PR", "CC", "DE", "CA", "CF"):
        print("start", name)
        no_dr_enzyme = []
        for i in range(len(s)):
            if s[i].startswith(f"{name}   "):
                if s[i + 1].startswith("//"):
                    no_dr_enzyme.append(i)
        x = 1
        for i in no_dr_enzyme:
            s.insert(i + x, "DR   none ;\n")
            x += 1

    # accession列の作成
    accession_list = []
    name = ""
    for i in range(len(s)):
        if s[i].startswith("DR   "):
            x = s[i][5:-1]
            name += x
            if not s[i + 1].startswith("DR   "):
                accession_list.append(name)
                name = ""

    # DataFrameの作成
    df = pd.DataFrame(
        {"ID": id_list, "Description": description_list, "Accession": accession_list}
    )

    # csv書き込み
    df.to_csv("enzyme.csv", index=False)

if '__main__' == __name__:
    main()

## 完成

enzyme.csvの中身(一部)

ID,Description,Accession
1.1.1.1,Alcohol dehydrogenase.,"P07327, ADH1A_HUMAN;  P28469, ADH1A_MACMU;  Q5RBP7, ADH1A_PONAB;P25405, ADH1A_SAAHA;  P25406, ADH1B_SAAHA;  P00327, ADH1E_HORSE;P00326, ADH1G_HUMAN;  O97959, ADH1G_PAPHA;  P00328, ADH1S_HORSE;P80222, ADH1_ALLMI ;  P30350, ADH1_ANAPL ;  P49645, ADH1_APTAU ;P06525, ADH1_ARATH ;  P41747, ADH1_ASPFN ;  Q17334, ADH1_CAEEL ;P43067, ADH1_CANAX ;  P85440, ADH1_CATRO ;  P14219, ADH1_CENAM ;P48814, ADH1_CERCA ;  Q70UN9, ADH1_CERCO ;  P23991, ADH1_CHICK ;P86883, ADH1_COLLI ;  P19631, ADH1_COTJA ;  P23236, ADH1_DROHY ;P48586, ADH1_DROMN ;  P09370, ADH1_DROMO ;  P22246, ADH1_DROMT ;P07161, ADH1_DROMU ;  P12854, ADH1_DRONA ;  P08843, ADH1_EMENI ;P26325, ADH1_GADMC ;  Q9Z2M2, ADH1_GEOAT ;  Q64413, ADH1_GEOBU ;Q64415, ADH1_GEOKN ;  P12311, ADH1_GEOSE ;  P05336, ADH1_HORVU ;P20369, ADH1_KLULA ;  Q07288, ADH1_KLUMA ;  P00333, ADH1_MAIZE ;P86885, ADH1_MESAU ;  P00329, ADH1_MOUSE ;  P80512, ADH1_NAJNA ;Q9P6C8, ADH1_NEUCR ;  Q75ZX4, ADH1_ORYSI ;  Q2R8Z5, ADH1_ORYSJ ;P12886, ADH1_PEA   ;  P22797, ADH1_PELPE ;  P41680, ADH1_PERMA ;P25141, ADH1_PETHY ;  O00097, ADH1_PICST ;  Q03505, ADH1_RABIT ;P06757, ADH1_RAT   ;  P14673, ADH1_SOLTU ;  P80338, ADH1_STRCA ;P13603, ADH1_TRIRP ;  P00330, ADH1_YEAST ;  Q07264, ADH1_ZEALU ;P20368, ADH1_ZYMMO ;  O45687, ADH2_CAEEL ;  O94038, ADH2_CANAL ;P48815, ADH2_CERCA ;  Q70UP5, ADH2_CERCO ;  Q70UP6, ADH2_CERRO ;P27581, ADH2_DROAR ;  P25720, ADH2_DROBU ;  P23237, ADH2_DROHY ;P48587, ADH2_DROMN ;  P09369, ADH2_DROMO ;  P07160, ADH2_DROMU ;P24267, ADH2_DROWH ;  P37686, ADH2_ECOLI ;  P54202, ADH2_EMENI ;Q24803, ADH2_ENTHI ;  P42327, ADH2_GEOSE ;  P10847, ADH2_HORVU ;P49383, ADH2_KLULA ;  Q9P4C2, ADH2_KLUMA ;  P04707, ADH2_MAIZE ;Q4R1E8, ADH2_ORYSI ;  Q0ITW7, ADH2_ORYSJ ;  O13309, ADH2_PICST ;P28032, ADH2_SOLLC ;  P14674, ADH2_SOLTU ;  F2Z678, ADH2_YARLI ;P00331, ADH2_YEAST ;  F8DVL8, ADH2_ZYMMA ;  P0DJA2, ADH2_ZYMMO ;P07754, ADH3_EMENI ;  P42328, ADH3_GEOSE ;  P10848, ADH3_HORVU ;P49384, ADH3_KLULA ;  P14675, ADH3_SOLTU ;  P07246, ADH3_YEAST ;P49385, ADH4_KLULA ;  Q09669, ADH4_SCHPO ;  A6ZTT5, ADH4_YEAS7 ;P10127, ADH4_YEAST ;  Q6XQ67, ADH5_SACPS ;  P38113, ADH5_YEAST ;P28332, ADH6_HUMAN ;  P41681, ADH6_PERMA ;  Q5R7Z8, ADH6_PONAB ;Q5XI95, ADH6_RAT   ;  P40394, ADH7_HUMAN ;  Q64437, ADH7_MOUSE ;P41682, ADH7_RAT   ;  P9WQC0, ADHA_MYCTO ;  P9WQC1, ADHA_MYCTU ;O31186, ADHA_RHIME ;  Q7U1B9, ADHB_MYCBO ;  P9WQC6, ADHB_MYCTO ;P9WQC7, ADHB_MYCTU ;  P9WQB8, ADHD_MYCTO ;  P9WQB9, ADHD_MYCTU ;P33744, ADHE_CLOAB ;  P0A9Q8, ADHE_ECO57 ;  P0A9Q7, ADHE_ECOLI ;P81600, ADHH_GADMO ;  P72324, ADHI_RHOS4 ;  Q9SK86, ADHL1_ARATH;Q9SK87, ADHL2_ARATH;  A1L4Y2, ADHL3_ARATH;  Q8VZ49, ADHL4_ARATH;Q0V7W6, ADHL5_ARATH;  Q8LEB2, ADHL6_ARATH;  Q9FH04, ADHL7_ARATH;P81601, ADHL_GADMO ;  P39451, ADHP_ECOLI ;  O46649, ADHP_RABIT ;O46650, ADHQ_RABIT ;  Q96533, ADHX_ARATH ;  Q3ZC42, ADHX_BOVIN ;Q17335, ADHX_CAEEL ;  Q54TC2, ADHX_DICDI ;  P46415, ADHX_DROME ;P19854, ADHX_HORSE ;  P11766, ADHX_HUMAN ;  P93629, ADHX_MAIZE ;P28474, ADHX_MOUSE ;  P80360, ADHX_MYXGL ;  P81431, ADHX_OCTVU ;A2XAZ3, ADHX_ORYSI ;  Q0DWH1, ADHX_ORYSJ ;  P80572, ADHX_PEA   ;O19053, ADHX_RABIT ;  P12711, ADHX_RAT   ;  P80467, ADHX_SAAHA ;P86884, ADHX_SCYCA ;  P79896, ADHX_SPAAU ;  Q9NAR7, ADH_BACOL  ;P14940, ADH_CUPNE  ;  Q0KDL6, ADH_CUPNH  ;  Q00669, ADH_DROAD  ;P21518, ADH_DROAF  ;  P25139, ADH_DROAM  ;  Q50L96, ADH_DROAN  ;P48584, ADH_DROBO  ;  P22245, ADH_DRODI  ;  Q9NG42, ADH_DROEQ  ;P28483, ADH_DROER  ;  P48585, ADH_DROFL  ;  P51551, ADH_DROGR  ;Q09009, ADH_DROGU  ;  P51549, ADH_DROHA  ;  P21898, ADH_DROHE  ;Q07588, ADH_DROIM  ;  Q9NG40, ADH_DROIN  ;  Q27404, ADH_DROLA  ;P10807, ADH_DROLE  ;  P07162, ADH_DROMA  ;  Q09010, ADH_DROMD  ;P00334, ADH_DROME  ;  Q00671, ADH_DROMM  ;  P25721, ADH_DROMY  ;Q00672, ADH_DRONI  ;  P07159, ADH_DROOR  ;  P84328, ADH_DROPB  ;P37473, ADH_DROPE  ;  P23361, ADH_DROPI  ;  P23277, ADH_DROPL  ;Q6LCE4, ADH_DROPS  ;  Q9U8S9, ADH_DROPU  ;  Q9GN94, ADH_DROSE  ;Q24641, ADH_DROSI  ;  P23278, ADH_DROSL  ;  Q03384, ADH_DROSU  ;P28484, ADH_DROTE  ;  P51550, ADH_DROTS  ;  B4M8Y0, ADH_DROVI  ;Q05114, ADH_DROWI  ;  P26719, ADH_DROYA  ;  P17648, ADH_FRAAN  ;P48977, ADH_MALDO  ;  P81786, ADH_MORSE  ;  P9WQC2, ADH_MYCTO  ;P9WQC3, ADH_MYCTU  ;  P39462, ADH_SACS2  ;  P25988, ADH_SCAAL  ;Q00670, ADH_SCACA  ;  P00332, ADH_SCHPO  ;  Q2FJ31, ADH_STAA3  ;Q2G0G1, ADH_STAA8  ;  Q2YSX0, ADH_STAAB  ;  Q5HI63, ADH_STAAC  ;Q99W07, ADH_STAAM  ;  Q7A742, ADH_STAAN  ;  Q6GJ63, ADH_STAAR  ;Q6GBM4, ADH_STAAS  ;  Q8NXU1, ADH_STAAW  ;  Q5HRD6, ADH_STAEQ  ;Q8CQ56, ADH_STAES  ;  Q4J781, ADH_SULAC  ;  P50381, ADH_SULSR  ;Q96XE0, ADH_SULTO  ;  P51552, ADH_ZAPTU  ;  Q5AR48, ASQE_EMENI ;A5JYX5, DHS3_CAEEL ;  P32771, FADH_YEAST ;  A7ZIA4, FRMA_ECO24 ;Q8X5J4, FRMA_ECO57 ;  A7ZX04, FRMA_ECOHS ;  A1A835, FRMA_ECOK1 ;Q0TKS7, FRMA_ECOL5 ;  Q8FKG1, FRMA_ECOL6 ;  B1J085, FRMA_ECOLC ;P25437, FRMA_ECOLI ;  B1LIP1, FRMA_ECOSM ;  Q1RFI7, FRMA_ECOUT ;P44557, FRMA_HAEIN ;  P39450, FRMA_PHODP ;  Q3Z550, FRMA_SHISS ;P73138, FRMA_SYNY3 ;  E1ACQ9, NOTN_ASPSM ;  N4WE73, OXI1_COCH4 ;N4WE43, RED2_COCH4 ;  N4WW42, RED3_COCH4 ;  P33010, TERPD_PSESP;O07737, Y1895_MYCTU;"
1.1.1.2,Alcohol dehydrogenase (NADP(+)).,"Q6AZW2, A1A1A_DANRE;  Q568L5, A1A1B_DANRE;  Q24857, ADH3_ENTHI ;Q04894, ADH6_YEAST ;  P25377, ADH7_YEAST ;  O57380, ADH8_PELPE ;Q9F282, ADHA_THEET ;  P0CH36, ADHC1_MYCS2;  P0CH37, ADHC2_MYCS2;P0A4X1, ADHC_MYCBO ;  P9WQC4, ADHC_MYCTO ;  P9WQC5, ADHC_MYCTU ;P27250, AHR_ECOLI  ;  Q3ZCJ2, AK1A1_BOVIN;  Q5ZK84, AK1A1_CHICK;O70473, AK1A1_CRIGR;  P14550, AK1A1_HUMAN;  Q9JII6, AK1A1_MOUSE;P50578, AK1A1_PIG  ;  Q5R5D5, AK1A1_PONAB;  P51635, AK1A1_RAT  ;Q6GMC7, AK1A1_XENLA;  Q28FD1, AK1A1_XENTR;  Q9UUN9, ALD2_SPOSA ;P27800, ALDX_SPOSA ;  P75691, YAHK_ECOLI ;"
1.1.1.3,Homoserine dehydrogenase.,"P00561, AK1H_ECOLI ;  P27725, AK1H_SERMA ;  P00562, AK2H_ECOLI ;Q9SA18, AKH1_ARATH ;  P49079, AKH1_MAIZE ;  O81852, AKH2_ARATH ;P49080, AKH2_MAIZE ;  P57290, AKH_BUCAI  ;  Q8K9U9, AKH_BUCAP  ;Q89AR4, AKH_BUCBP  ;  P37142, AKH_DAUCA  ;  P44505, AKH_HAEIN  ;P19582, DHOM_BACSU ;  P08499, DHOM_CORGL ;  Q5B998, DHOM_EMENI ;Q9ZL20, DHOM_HELPJ ;  P56429, DHOM_HELPY ;  Q9CGD8, DHOM_LACLA ;P52985, DHOM_LACLC ;  P37143, DHOM_METGL ;  Q58997, DHOM_METJA ;P63630, DHOM_MYCBO ;  P46806, DHOM_MYCLE ;  P9WPX0, DHOM_MYCTO ;P9WPX1, DHOM_MYCTU ;  P29365, DHOM_PSEAE ;  O94671, DHOM_SCHPO ;P52986, DHOM_SYNY3 ;  P31116, DHOM_YEAST ;  P37144, DHON_METGL ;"
1.1.1.4,"(R,R)-butanediol dehydrogenase.","P14940, ADH_CUPNE  ;  Q0KDL6, ADH_CUPNH  ;  P39714, BDH1_YEAST ;O34788, BDHA_BACSU ;  Q00796, DHSO_HUMAN ;"
1.1.1.5,Transferred entry: 1.1.1.303 and 1.1.1.304.,none ;
1.1.1.6,Glycerol dehydrogenase.,"A4IP64, ADH1_GEOTN ;  O13702, GLD1_SCHPO ;  P45511, GLDA_CITFR ;P0A9S6, GLDA_ECOL6 ;  P0A9S5, GLDA_ECOLI ;  P32816, GLDA_GEOSE ;P50173, GLDA_PSEPU ;  Q9WYQ4, GLDA_THEMA ;  Q92EU6, GOLD_LISIN ;"
1.1.1.7,Propanediol-phosphate dehydrogenase.,none ;

後はblastの結果と作成したテーブルを照合すれば、同定された酵素のEC number一覧が取得できる(=どんな役割をもつ酵素が存在するか把握できる)。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?