0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

nablaを用いたgradient・divergence・rotationの定義

Posted at

演算子の定義

nablaの定義

演算子$\nabla$は下記のように定義されます。

\nabla = \frac{\partial}{\partial x} \mathbf{i} + \frac{\partial}{\partial y} \mathbf{j} + \frac{\partial}{\partial z} \mathbf{k}

laplacianの定義

ラプラシアン演算子$\nabla \cdot \nabla$は下記のように定義されます。

\nabla \cdot \nabla = \frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}}

grad・div・rotの定義

gradの定義

多次元スカラー関数$\phi (x,y,z)$の勾配$\mathrm{grad} \phi$は下記のように定義されます。

\mathrm{grad} \, \phi = \nabla \phi = \frac{\partial \phi}{\partial x} \mathbf{i} + \frac{\partial \phi}{\partial y} \mathbf{j} + \frac{\partial \phi}{\partial z} \mathbf{k}

divの定義

空間内のある領域に含まれる全ての点における関数を$V(x,y,z)$のように定義すると、このとき$V$のダイバージェンス(divergence)である$\mathrm{div} V$は下記のように定義されます。

\begin{align}
\mathrm{div} \, V &= \nabla \cdot V = \left( \frac{\partial}{\partial x} \mathbf{i} + \frac{\partial}{\partial y} \mathbf{j} + \frac{\partial}{\partial z} \mathbf{k} \right) \cdot (V_{1} \mathbf{i} + V_{2} \mathbf{j} + V_{3} \mathbf{k}) \\
  &= \frac{\partial V_{1}}{\partial x} \mathbf{i} + \frac{\partial V_{2}}{\partial y} \mathbf{j} + \frac{\partial V_{3}}{\partial z} \mathbf{k}
\end{align}

rotの定義

空間内のある領域に含まれる全ての点における関数を$V(x,y,z)$のように定義すると、このとき$V$の回転(rotation)である$\mathrm{rot} V$は下記のように定義されます。

\begin{align}
\mathrm{rot} \, V &= \nabla \times V = \left( \frac{\partial}{\partial x} \mathbf{i} + \frac{\partial}{\partial y} \mathbf{j} + \frac{\partial}{\partial z} \mathbf{k} \right) \times (V_{1} \mathbf{i} + V_{2} \mathbf{j} + V_{3} \mathbf{k}) \\
  &= \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \displaystyle \frac{\partial}{\partial x} & \displaystyle \frac{\partial}{\partial y} & \displaystyle \frac{\partial}{\partial z} \\ V_{1} & V_{2} & V_{3} \end{array} \right| \\
  &= \mathbf{i} \left| \begin{array}{cc} \displaystyle \frac{\partial}{\partial y} & \displaystyle \frac{\partial}{\partial z} \\ V_{2} & V_{3} \end{array} \right| + \mathbf{j} \left| \begin{array}{cc} \displaystyle \frac{\partial}{\partial x} & \displaystyle \frac{\partial}{\partial z} \\ V_{1} & V_{3} \end{array} \right| + \mathbf{k} \left| \begin{array}{cc} \displaystyle \frac{\partial}{\partial x} & \displaystyle \frac{\partial}{\partial y} \\ V_{1} & V_{2} \end{array} \right| \\
  &= \mathbf{i} \left( \frac{\partial V_3}{\partial y} - \frac{\partial V_2}{\partial z} \right) - \mathbf{j} \left( \frac{\partial V_3}{\partial x} - \frac{\partial V_1}{\partial z} \right) +  \mathbf{k} \left( \frac{\partial V_2}{\partial x} - \frac{\partial V_1}{\partial y} \right) \\
  &= \mathbf{i} \left( \frac{\partial V_3}{\partial y} - \frac{\partial V_2}{\partial z} \right) + \mathbf{j} \left( \frac{\partial V_1}{\partial z} - \frac{\partial V_3}{\partial x} \right) +  \mathbf{k} \left( \frac{\partial V_2}{\partial x} - \frac{\partial V_1}{\partial y} \right)
\end{align}
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?