3
0

More than 3 years have passed since last update.

Amazon Redshift ML で機械学習モデル構築 #2 MLモデル構築

Last updated at Posted at 2021-03-15

はじめに

サンプルデータを AWS Redshift にインポートし、Amazon Redshift ML で機械学習モデルを構築するまでの流れです。作成したばかりの AWS アカウントを想定しているので、周辺環境の設定内容で引っかかった方はご参照ください。

第1回では AWS環境の構築手順、第2回の本記事は機械学習モデルを作成するまでの手順をまとめました。

ローデータテーブル作成

以下 SQL クライアントでクエリをたたいています。
モデル作成の権限をユーザーに付与します。

1
GRANT CREATE MODEL TO awsuser;

作成するデータベースやモデルを保持するスキーマを作成します。

2
CREATE SCHEMA redshiftml_test;

ローデータ用のテーブルを作成します。

3
create table redshiftml_test.minethatdata_orig(
                recency int4,
                history_segment varchar(256),
                history float (8),
                mens boolean,
                womens boolean,
                zip_code varchar(256),
                newbie boolean,
                channel varchar(256),
                segment varchar(256),
                visit boolean,
                conversion boolean,
                spend float (8)
);

S3 から CSV データをインポートします。CSV data S3 URIiam-role-arn はリソース作成時に拾ったパラメータです。

4
copy redshiftml_test.minethatdata_orig
from '{CSV data S3 URI}'
iam_role '{iam-role-arn}'
csv
IGNOREHEADER 1
;

ローデータテーブルのプレビュー

5
select * from redshiftml_test.minethatdata_orig limit 10;

out
image.png

学習用テーブル作成

以降のクエリを別のユーザーが行う場合は、スキーマの変更権限を付与します。

6
GRANT CREATE, USAGE ON SCHEMA redshiftml_test TO awsuser;

モデル学習しやすいようにテーブルを作成します。

  • segment (受け取ったキャンペーンメールの種類。Mens E-mail, Womens E-mail, No E-mail) を 1/0 で表現 (w 列)
  • Spend (過去2週間の購入金額) を目的変数として利用 (y 列)
  • 通し番号を unique_id として付与
  • unique_id ベースで TRAIN データと TEST データに分割 (assigm 列)
7
CREATE TABLE redshiftml_test.MineThatData AS 
    SELECT
     *,
     CASE
       WHEN unique_id >= 0.50 THEN 'TRAIN'
       ELSE 'TEST'
     END AS assign
    FROM (
     SELECT
       *,
       RANDOM() AS unique_id,
       CASE segment
         WHEN 'Mens E-Mail' THEN 1
         WHEN 'No E-Mail' THEN 0
       END AS w,
       spend AS y
     FROM
       redshiftml_test.minethatdata_orig
     WHERE
       segment IN ('Mens E-Mail', 'No E-Mail')
    )

学習用テーブルのプレビュー

8
select * from redshiftml_test.MineThatData limit 10;

out
image.png

モデル構築

TRAIN データに割り振ったユーザーから (assign = 'TRAIN')、男性向けメールを送るを送ったユーザーを抽出し (w = 1) 、指標値を MSE とした回帰モデルを作成します。

  • MSE (平均二乗誤差)
    • 成果位地と予測値の差を事情し、平均値をとったもの
    • 実際と予測値の誤差が大きいほどモデルの精度が悪いと判断
    • 外れ値にも過剰適合(=過学習)してしまう可能性も

今回のケースだとこのようになります。

9
CREATE MODEL redshiftml_test.uplist_treatment
FROM (
 SELECT
   recency,
   history,
   mens,
   womens,
   zip_code,
   newbie,
   channel,
   y
 FROM
   redshiftml_test.MineThatData
 WHERE
   w = 1 AND assign = 'TRAIN'
)
TARGET y
FUNCTION uplift_treatment
IAM_ROLE '{iam-role-arn}'
AUTO ON
PROBLEM_TYPE REGRESSION
OBJECTIVE 'MSE'
SETTINGS (
 S3_BUCKET '{s3 bucket name}'
);

以下クエリでモデルの概要を取得できます。

10
SHOW MODEL redshiftml_test.uplist_treatment 

今回のデータセットではモデル構築の完了に一時間ほど要しました。
完了次第、SageMaker > ハイパーパラメータの調整ジョブ からジョブの実行にかかった時間などを見ることができます。未完了の状態で推論するクエリを投げてもモデルの準備ができていないと怒られます。のんびり待ちましょう。

2021-03-12_02h44_34.png

推論実行

推論結果の参照を Redshift の別ユーザーが行う場合は、権限を付与します

11
GRANT EXECUTE ON MODEL redshiftml_test.uplist_treatment TO awsuser;

以下で Redshift 経由で推論結果を取得できます。uplift_treatment の数値が高いユーザーに対して優先的に販促キャンペーンを打てそうです。

12
SELECT
    unique_id,
    redshiftml_test.uplift_treatment(RECENCY, HISTORY, MENS, WOMENS, ZIP_CODE, NEWBIE, CHANNEL)
FROM (
    SELECT
        *
    FROM
        redshiftml_test.MineThatData
    WHERE w = 1 AND assign = 'TEST'
    )

out
image.png

CREATE MODEL 構文

AUTO_ML を利用する場合

上記では AUTOML 機能を用いました。 (AUTO ON)
もっともシンプルに実装する場合の基本構文は以下の通りです。

AUTO_ONの場合
CREATE MODEL model_name 
FROM { table_name | ( select_query ) }
TARGET column_name
FUNCTION prediction_function_name
IAM_ROLE 'iam_role_arn'
SETTINGS (
  S3_BUCKET 'bucket'
)

AUTO_ML を利用しない場合

トレーニングする際のモデルタイプやハイパーパラメータにあたりが付く場合は、AUTOML 昨日を利用せずに実行できます (AUTO OFF)

2021年3月15日現在、XGBoost のみサポート されています。CREATE MODEL 構文は以下の通り。

AUTO_OFFの場合
CREATE MODEL model_name
FROM { table_name | (select_statement ) }
TARGET column_name    
FUNCTION function_name
IAM_ROLE 'iam_role_arn'
AUTO OFF
MODEL_TYPE XGBOOST
OBJECTIVE { 'reg:squarederror' | 'reg:squaredlogerror' | 'reg:logistic' | 
            'reg:pseudohubererror' | 'reg:tweedie' | 'binary:logistic' | 'binary:hinge' | 
            'multi:softmax' | 'rank:pairwise' | 'rank:ndcg' }
HYPERPARAMETERS DEFAULT EXCEPT (
    NUM_ROUND '10',
    ETA '0.2',
    NUM_CLASS '10',
    (, ...)
)

完全な CREATE MODEL 構文

完全な構文は以下のとおりです。

CREATE MODEL model_name
FROM { table_name | ( select_statement ) }
TARGET column_name    
FUNCTION function_name
IAM_ROLE 'iam_role_arn' 
[ AUTO ON / OFF ]
  -- default is AUTO ON 
[ MODEL_TYPE { XGBOOST } ]
  -- not required for non AUTO OFF case, default is the list of all supported type
  -- required for AUTO OFF 
[ PROBLEM_TYPE ( REGRESSION | BINARY_CLASSIFICATION | MULTICLASS_CLASSIFICATION ) ]
  -- not supported when AUTO OFF 
[ OBJECTIVE ( 'MSE' | 'Accuracy' | 'F1' | 'F1_Macro' | 'AUC' |
              'reg:squarederror' | 'reg:squaredlogerror'| 'reg:logistic'|
              'reg:pseudohubererror' | 'reg:tweedie' | 'binary:logistic' | 'binary:hinge',
              'multi:softmax' ) ]
  -- for AUTO ON: first 5 are valid
  -- for AUTO OFF: 6-13 are valid
[ PREPROCESSORS 'string' ]
  -- required for AUTO OFF, when it has to be 'none'
  -- optional for AUTO ON
[ HYPERPARAMETERS { DEFAULT | DEFAULT EXCEPT ( Key 'value' (,...) ) } ]
  -- support XGBoost hyperparameters, except OBJECTIVE
  -- required and only allowed for AUTO OFF
  -- default NUM_ROUND is 100
  -- NUM_CLASS is required if objective is multi:softmax (only possible for AUTO OFF)
  SETTINGS (
  S3_BUCKET 'bucket', |
    -- required 
  KMS_KEY_ID 'kms_string', |
    -- optional
  S3_GARBAGE_COLLECT on / off, |
    -- optional, defualt is on.
  MAX_CELLS integer, |
    -- optional, default is 1,000,000
  MAX_RUNTIME integer (, ...)
    -- optional, default is 5400 (1.5 hours)
)

詳細はこちらをどうぞ

備考

メトリクス

機械学習モデルの品質を測定するための指標として5種から選択できます。
データセットや予測対象の属性、予測結果の用途に応じてどのメトリクスが適当かどうか変わってきます。

  • Accuracy
    • 他項分類のデフォルトメトリクス
  • MSE
    • 回帰のデフォルトメトリクス
    • 利用されるデータに外れ値が多い場合精度が低くなりやすいので注意
  • F1
    • 二項分類のデフォルト
    • 適合率と再現率を等しく重視する
    • 回帰でMSEだと精度が上がりにくい場合にも
  • F1macro
    • 他項分類で利用
    • F1 スコアの他項分類版
  • AUC
    • 確率を返すロジスティクス回帰などの二項分類で利用

ハイパーパラメータ調整ジョブの実行時間

モデル学習がいつ終わるか把握したいものですが、SQL クライアントからはこの情報をパッシブに取得できません。以下迂回策です。

CloudWatch を利用

先述の通り、RedshiftML の学習データは指定の S3 バケットに保存され、学習完了時に削除されます。これをトリガーにして CloudWatch で通知を受け取るように設定します。
なお、S3_GARBAGE_COLLECT オプションを明示する際は ON にする必要があります (デフォルトはON)

MAX_RUNTIME を設定

トレーニングの最大時間を指定するオプションです。
デフォルト値は 90分 (5,400秒) で、データセットが小さい場合は指定値よりも早く完了します。
ジョブ完了通知ではありませんが、短時間でトライアンドエラーして進めたい時に使えそうです。

参考クエリ

ちらほら使うクエリを乗せておきます。

0
-- アクセス可能なモデル一覧取得
SHOW MODEL ALL;

-- Redshift データベースからのモデルの削除
drop model redshiftml_test.uplist_treatment;

-- テーブル名一覧取得
SELECT DISTINCT pg_table_def.tablename
FROM pg_table_def
WHERE schemaname = 'public' AND tablename NOT LIKE'%_pkey'
ORDER BY tablename;

-- インポートでエラーが出る場合にはこちらからログを参照
select query, substring(filename,22,25) as filename,line_number as line, 
substring(colname,0,12) as column, type, position as pos, substring(raw_line,0,30) as line_text,
substring(raw_field_value,0,15) as field_text, 
substring(err_reason,0,45) as reason
from stl_load_errors 
order by query desc
limit 10;

まとめ

SQL だけで機械学習モデルのデプロイ、Redshift 経由で推論結果の取得までできるのは便利ですね。
バックエンドでは SageMaker Autopilot が動作しているので、SageMaker のコンソールからモデルをデプロイすればエンドポイント経由での推論も可能です。
そうなればドリフト値を SageMaker Model Monitor でトラッキング出来るので MLOPS 環境の構築のハードルも下がるのではないでしょうか?
Redshift ユーザーは是非触ってみてください。

参考リンク

モデリング部分のSQLスクリプトはこちらの記事からお借りしたものをベースにしています

Amazon Redshift ML の紹介記事です。

公式ドキュメント

3
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
3
0