5
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

組み合わせ nCk mod m を求める

Last updated at Posted at 2019-06-29

$nCk \mod m$ の組み合わせの求め方を3つ紹介します。

間違っている、もっといい方法があるなどありましたらコメントで知らせていただけると嬉しいです。

[求め方1] もっとも一般的な方法

フェルマーの小定理より

a^p \equiv a \mod m

よって

a^{-1} \equiv a^{p-2} \mod m
// 冪乗余計算アルゴリズム
// a^b mod m を計算します。
fn pow_mod(a: i64, b: i64, m: i64) -> i64 {
    if b == 0  {
        1
    } else if b % 2 == 0 {
        let d = pow_mod(a, b/2, m);
        (d * d) % m
    } else {
        (a * pow_mod(a, b-1, m)) % m
    }
}

// nCc mod m を計算します。
fn combination(mut n: i64, c: i64, m: i64) -> i64 {
    let mut upe = 1;
    let mut dow = 1;
    for i in 1..c + 1 {
        upe = upe * n % m;
        dow = dow * i % m;

        n -= 1;
    }
    upe * pow_mod(dow, m-2, m) % m
}

[求め方2] バイナリ法

[求め方1]より早いです。
バイナリ法はRSA暗号で冪乗余を計算する際に使用されたりします。

combination関数は上と変わりません。

trait MOD<T> {
    // べき乗余計算アルゴリズム
    // a^n mod m を計算する
    // バイナリ法
    fn pow_mod(a: T, n: T, m: T) -> T;
}

impl MOD<i64> for i64 {
    fn pow_mod(mut a: i64, mut n: i64, m: i64) -> i64 {
        let mut res: i64 = 1;
        while n > 0 {
            if n & 1 == 1 {
                res = res * a % m;
            }
            a = a * a % m;
            n >>= 1;
        }
        res
    }
}

impl MOD<usize> for usize {
    fn pow_mod(mut a: usize, mut n: usize, m: usize) -> usize {
        let mut res: usize = 1;
        while n > 0 {
            if n & 1 == 1 {
                res = res * a % m;
            }
            a = a * a % m;
            n >>= 1;
        }
        res
    }
}

[求め方3] 拡張ユークリッド互除法

今回紹介した3つの方法の中でもっとも速いです。
別記事に詳しく説明しました。

// 拡張ユークリッド互除法
// 入力: 整数 u, v (u > v > 0)
// 返り値: e := v^{-1} mod u を満たす e (=t)
fn extended_euclidean(u: i64, v: i64) -> i64 {
    let mut r0 = u;
    let mut r1 = v;
    let mut s0 = 1;
    let mut s1 = 0;
    let mut t0 = 0;
    let mut t1 = 1;
    while r1 != 0 {
        let q = r0 / r1;
        let r = r0 - q * r1;
        let s = s0 - q * s1;
        let t = t0 - q * t1;
        r0 = r1;
        s0 = s1;
        t0 = t1;
        r1 = r;
        s1 = s;
        t1 = t;
    }
    if t0 < 0 {
        t0 + u
    } else {
        t0
    }
}

// nCc mod m を計算します。
fn combination(mut n: i64, c: i64, m: i64) -> i64 {
    let mut upe = 1;
    let mut dow = 1;
    for i in 1..c + 1 {
        upe = upe * n % m;
        dow = dow * i % m;

        n -= 1;
    }
    upe * extended_euclidean(m, dow) % m
}

[PS] パスカルの三角形を使った方法

パスカルの三角形を使ったnCk mod [備忘録]

過去AtCoderでの出題

abc123 D問題

abc034 C問題

M-SOLUTIONS プロコンオープン C問題

など

参考

AtCoder abc034 解説

ビット演算 (bit 演算) の使い方を総特集! 〜 マスクビットから bit DP まで 〜

5
5
2

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
5
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?