#はじめに
皆さんラズパイでお手軽電子工作してますか?
自分も
格安スマートリモコンの作り方
を見て作ってみたくなって秋月電子に走った一人です。
上記記事でも登場していますが、ラズパイのGPIOから赤外線センサで受信したパターンを記録するために**irrp.py**というスクリプトを使用する方法が主流...というか多くの場合紹介されています。
このスクリプトを使うと、赤外線コードの 受信、記録、保存、バックアップ、再生がコマンドラインから実行できます。
そんな超有能irrp.py
ですが、あくまでコマンドラインで完結するように書かれているため、自分のようにPythonでSlackボットからリモコン操作まで完結させえたい人間は、
Pythonスクリプト → subprocess → コマンドラインにコマンドを送信 → irrp.py(Pythonスクリプト)実行
という無駄極まりないステップを踏むことになります。
なのでモジュール化しました。('モジュール化' の使い方合ってる?)
大したことはしてませんが、扱いやすさは天地の差です。
#モジュール化したやつ
500行くらいあるので畳みます。
#!/usr/bin/env python
# irrp.py
# 2015-12-21
# Public Domain
# 2020-12-08
# Moduled by Cartelet
"""
A utility to record and then playback IR remote control codes.
RECORD
glitch ignore edges shorter than glitch microseconds, default 100 us
post expect post milliseconds of silence after code, default 15 ms
pre expect pre milliseconds of silence before code, default 200 ms
short reject codes with less than short pulses, default 10
tolerance consider pulses the same if within tolerance percent, default 15
no_confirm don't require a code to be repeated during record
TRANSMIT
freq IR carrier frequency, default 38 kHz
gap gap in milliseconds between transmitted codes, default 100 ms
"""
import time
import json
import os
import pigpio # http://abyz.co.uk/rpi/pigpio/python.html
class IRRP:
def __init__(self,
file: str,
freq: float = 38.0,
gap: int = 100,
glitch: int = 100,
pre: int = 200,
post: int = 15,
short: int = 10,
tolerance: int = 15,
verbose: bool = False,
no_confirm: bool = False):
self.GPIO = None
self.FILE = file #Filename
self.FREQ = freq #frequency kHz
self.GAP_MS = gap #key gap ms
self.GLITCH = glitch #glitch us
self.POST_MS = post #postamble ms
self.PRE_MS = pre #preamble ms
self.SHORT = short #short code length
self.TOLERANCE = tolerance #tolerance percent
self.VERBOSE = verbose #Be verbose
self.NO_CONFIRM = no_confirm #No confirm needed
self.POST_US = self.POST_MS * 1000
self.PRE_US = self.PRE_MS * 1000
self.GAP_S = self.GAP_MS / 1000.0
self.CONFIRM = not self.NO_CONFIRM
self.TOLER_MIN = (100 - self.TOLERANCE) / 100.0
self.TOLER_MAX = (100 + self.TOLERANCE) / 100.0
self.last_tick = 0
self.in_code = False
self.code = []
self.fetching_code = False
def _backup(self, f):
"""
f -> f.bak -> f.bak1 -> f.bak2
"""
try:
os.rename(
os.path.realpath(f) + ".bak1",
os.path.realpath(f) + ".bak2")
except:
pass
try:
os.rename(
os.path.realpath(f) + ".bak",
os.path.realpath(f) + ".bak1")
except:
pass
try:
os.rename(os.path.realpath(f), os.path.realpath(f) + ".bak")
except:
pass
def _carrier(self, gpio, frequency, micros):
"""
Generate carrier square wave.
"""
wf = []
cycle = 1000.0 / frequency
cycles = int(round(micros / cycle))
on = int(round(cycle / 2.0))
sofar = 0
for c in range(cycles):
target = int(round((c + 1) * cycle))
sofar += on
off = target - sofar
sofar += off
wf.append(pigpio.pulse(1 << gpio, 0, on))
wf.append(pigpio.pulse(0, 1 << gpio, off))
return wf
def _normalise(self, c):
"""
Typically a code will be made up of two or three distinct
marks (carrier) and spaces (no carrier) of different lengths.
Because of transmission and reception errors those pulses
which should all be x micros long will have a variance around x.
This function identifies the distinct pulses and takes the
average of the lengths making up each distinct pulse. Marks
and spaces are processed separately.
This makes the eventual generation of waves much more efficient.
Input
M S M S M S M S M S M
9000 4500 600 540 620 560 590 1660 620 1690 615
Distinct marks
9000 average 9000
600 620 590 620 615 average 609
Distinct spaces
4500 average 4500
540 560 average 550
1660 1690 average 1675
Output
M S M S M S M S M S M
9000 4500 609 550 609 550 609 1675 609 1675 609
"""
if self.VERBOSE:
print("before normalise", c)
entries = len(c)
p = [0] * entries # Set all entries not processed.
for i in range(entries):
if not p[i]: # Not processed?
v = c[i]
tot = v
similar = 1.0
# Find all pulses with similar lengths to the start pulse.
for j in range(i + 2, entries, 2):
if not p[j]: # Unprocessed.
if (c[j] * self.TOLER_MIN) < v < (
c[j] * self.TOLER_MAX): # Similar.
tot = tot + c[j]
similar += 1.0
# Calculate the average pulse length.
newv = round(tot / similar, 2)
c[i] = newv
# Set all similar pulses to the average value.
for j in range(i + 2, entries, 2):
if not p[j]: # Unprocessed.
if (c[j] * self.TOLER_MIN) < v < (
c[j] * self.TOLER_MAX): # Similar.
c[j] = newv
p[j] = 1
if self.VERBOSE:
print("after normalise", c)
def _compare(self, p1, p2):
"""
Check that both recodings correspond in pulse length to within
TOLERANCE%. If they do average the two recordings pulse lengths.
Input
M S M S M S M S M S M
1: 9000 4500 600 560 600 560 600 1700 600 1700 600
2: 9020 4570 590 550 590 550 590 1640 590 1640 590
Output
A: 9010 4535 595 555 595 555 595 1670 595 1670 595
"""
if len(p1) != len(p2):
return False
for i in range(len(p1)):
v = p1[i] / p2[i]
if (v < self.TOLER_MIN) or (v > self.TOLER_MAX):
return False
for i in range(len(p1)):
p1[i] = int(round((p1[i] + p2[i]) / 2.0))
if self.VERBOSE:
print("after compare", p1)
return True
def _tidy_mark_space(self, records, base):
ms = {}
# Find all the unique marks (base=0) or spaces (base=1)
# and count the number of times they appear,
for rec in records:
rl = len(records[rec])
for i in range(base, rl, 2):
if records[rec][i] in ms:
ms[records[rec][i]] += 1
else:
ms[records[rec][i]] = 1
if self.VERBOSE:
print("t_m_s A", ms)
v = None
for plen in sorted(ms):
# Now go through in order, shortest first, and collapse
# pulses which are the same within a tolerance to the
# same value. The value is the weighted average of the
# occurences.
#
# E.g. 500x20 550x30 600x30 1000x10 1100x10 1700x5 1750x5
#
# becomes 556(x80) 1050(x20) 1725(x10)
#
if v == None:
e = [plen]
v = plen
tot = plen * ms[plen]
similar = ms[plen]
elif plen < (v * self.TOLER_MAX):
e.append(plen)
tot += (plen * ms[plen])
similar += ms[plen]
else:
v = int(round(tot / float(similar)))
# set all previous to v
for i in e:
ms[i] = v
e = [plen]
v = plen
tot = plen * ms[plen]
similar = ms[plen]
v = int(round(tot / float(similar)))
# set all previous to v
for i in e:
ms[i] = v
if self.VERBOSE:
print("t_m_s B", ms)
for rec in records:
rl = len(records[rec])
for i in range(base, rl, 2):
records[rec][i] = ms[records[rec][i]]
def _tidy(self, records):
self._tidy_mark_space(records, 0) # Marks.
self._tidy_mark_space(records, 1) # Spaces.
def _end_of_code(self):
if len(self.code) > self.SHORT:
self._normalise(self.code)
self.fetching_code = False
else:
self.code = []
print("Short code, probably a repeat, try again")
def _cbf(self, gpio, level, tick):
if level != pigpio.TIMEOUT:
edge = pigpio.tickDiff(self.last_tick, tick)
self.last_tick = tick
if self.fetching_code:
if (edge > self.PRE_US) and (
not self.in_code): # Start of a code.
self.in_code = True
self.pi.set_watchdog(self.GPIO,
self.POST_MS) # Start watchdog.
elif (edge > self.POST_US) and self.in_code: # End of a code.
self.in_code = False
self.pi.set_watchdog(self.GPIO, 0) # Cancel watchdog.
self._end_of_code()
elif self.in_code:
self.code.append(edge)
else:
self.pi.set_watchdog(self.GPIO, 0) # Cancel watchdog.
if self.in_code:
self.in_code = False
self._end_of_code()
def Record(self, GPIO:int, ID:list, file:str="", pre:int=None, post:int=None):
self.pi = pigpio.pi() # Connect to Pi.
self.GPIO = GPIO
if file:
FILE = file
else:
FILE = self.FILE
if pre:
self.PRE_MS = pre
self.PRE_US = self.PRE_MS * 1000
if post:
self.POST_MS = post
self.POST_US = self.POST_MS * 1000
try:
f = open(self.FILE, "r")
records = json.load(f)
f.close()
except:
records = {}
self.pi.set_mode(GPIO, pigpio.INPUT) # IR RX connected to this GPIO.
self.pi.set_glitch_filter(GPIO, self.GLITCH) # Ignore glitches.
cb = self.pi.callback(GPIO, pigpio.EITHER_EDGE, self._cbf)
# Process each id
if isinstance(ID, str):
ID = [ID]
print("Recording")
for arg in ID:
print("Press key for '{}'".format(arg))
self.code = []
self.fetching_code = True
while self.fetching_code:
time.sleep(0.1)
print("Okay")
time.sleep(0.5)
if self.CONFIRM:
press_1 = self.code[:]
done = False
tries = 0
while not done:
print("Press key for '{}' to confirm".format(arg))
self.code = []
self.fetching_code = True
while self.fetching_code:
time.sleep(0.1)
press_2 = self.code[:]
the_same = self._compare(press_1, press_2)
if the_same:
done = True
records[arg] = press_1[:]
print("Okay")
time.sleep(0.5)
else:
tries += 1
if tries <= 3:
print("No match")
else:
print("Giving up on key '{}'".format(arg))
done = True
time.sleep(0.5)
else: # No confirm.
records[arg] = self.code[:]
self.pi.set_glitch_filter(GPIO, 0) # Cancel glitch filter.
self.pi.set_watchdog(GPIO, 0) # Cancel watchdog.
self._tidy(records)
self._backup(FILE)
f = open(FILE, "w")
f.write(
json.dumps(records, sort_keys=True).replace("],", "],\n") + "\n")
f.close()
self.pi.stop() # Disconnect from Pi.
def Playback(self, GPIO:int, ID:int, file:str=""): # Playback.
self.pi = pigpio.pi() # Connect to Pi.
if file:
FILE = file
else:
FILE = self.FILE
try:
f = open(FILE, "r")
except:
print("Can't open: {}".format(FILE))
exit(0)
records = json.load(f)
f.close()
self.pi.set_mode(GPIO, pigpio.OUTPUT) # IR TX connected to this GPIO.
self.pi.wave_add_new()
emit_time = time.time()
if self.VERBOSE:
print("Playing")
if isinstance(ID, str):
ID = [ID]
for arg in ID:
if arg in records:
self.code = records[arg]
# Create wave
marks_wid = {}
spaces_wid = {}
wave = [0] * len(self.code)
for i in range(0, len(self.code)):
ci = self.code[i]
if i & 1: # Space
if ci not in spaces_wid:
self.pi.wave_add_generic([pigpio.pulse(0, 0, ci)])
spaces_wid[ci] = self.pi.wave_create()
wave[i] = spaces_wid[ci]
else: # Mark
if ci not in marks_wid:
wf = self._carrier(GPIO, self.FREQ, ci)
self.pi.wave_add_generic(wf)
marks_wid[ci] = self.pi.wave_create()
wave[i] = marks_wid[ci]
delay = emit_time - time.time()
if delay > 0.0:
time.sleep(delay)
self.pi.wave_chain(wave)
if self.VERBOSE:
print("key " + arg)
while self.pi.wave_tx_busy():
time.sleep(0.002)
emit_time = time.time() + self.GAP_S
for i in marks_wid:
self.pi.wave_delete(marks_wid[i])
marks_wid = {}
for i in spaces_wid:
self.pi.wave_delete(spaces_wid[i])
spaces_wid = {}
else:
print("Id {} not found".format(arg))
self.pi.stop() # Disconnect from Pi.
def stop(self):
if self.pi.connected:
self.pi.stop() # Disconnect from Pi.
#使い方
同じディレクトリか、ライブラリたちが保存されてるフォルダに保存して使いましょう。
###受信
例えば冒頭で紹介した記事から、
$ python3 irrp.py -r -g18 -f codes light:on --no-confirm --post 130
と同じ結果を得るには
```python
from irrp import IRRP
save_file = "code" #保存先のファイル名(パス)
post_time = 130 #これ以上途切れたらコードが終了したと判断する時間
no_confirm = True
gpio = 18 #GPIOピンの番号
id_ = "light:on" #コマンドにつける名前
ir = IRRP(file=save_file, post=post_time, no_confirm=no_confirm) #インスタンス化、設定できる値はプログラムの方を見て
ir.Record(GPIO=gpio, ID=id_) #受信、保存、バックアップ #ここからも保存ファイルとかpre、postの時間の値を設定できる
ir.stop() #クラス内でpigpio.Piのインスタンスができているので終了する。
少し丁寧に書きましたがもちろん
from irrp import IRRP
ir = IRRP(file="code", post=130, no_confirm=True)
ir.Record(GPIO=18, ID="light:on")
ir.stop()
でもOKです。
###送信
次に送信もしてみます。
同じく記事から
$ python3 irrp.py -p -g17 -f codes light:on
は
```python
from irrp import IRRP
ir = IRRP(file="code", no_confirm=True)
ir.Playback(GPIO=17, ID="light:on")
ir.stop()
でいけます。
#応用
もちろんこれだけならコマンドラインから実行するのとそう変わらないで、プログラムの中で実行してみましょう。
from irrp import IRRP
import time
ir = IRRP(file="code", post=130, no_confirm=True)
ir.Record(GPIO=18, ID=["light:on", "light:off"]) #IDをリストで渡すと順番に受信、記録します。Playbackでは順番に送信します。
cnt = 0
While True:
cnt_3 = cnt % 3
if cnt_3==0:
ID = "light:on"
elif cnt_3==1:
ID = "light:off"
else:
ID = ["light:on", "light:off"] * 10
ir.Playback(GPIO=17, ID=ID)
cnt += 1
time.sleep(1)
ir.stop()
こんなコードを書けば三秒に一回照明がすんごい点滅してパーティー気分ですね。
#さいごに
捗るのでPythonistaでRaspbianな皆さんは試してみてね。
p.s.
ラズパイzeroスマートリモコン用にケースを作ったよ(人に見せたいだけ)。
いないと思うけどモデルのデータが欲しい人がいたらあげます。