ã¯ããã«
å
š6åã®ã·ãªãŒãºãéããŠãWMSïŒå庫管çã·ã¹ãã ïŒã掻çšããå庫éçšã®æé©åã解説ããŸãããã¬ã€ã¢ãŠãã人æç®¡çãè¿åãæ³šæåŠçãæ£åžã容é管çãã«ããŒããå¹çåãã³ã¹ãåæžã顧客æºè¶³åºŠã®åäžãå®çŸããŸãããæ¬æçµåã§ã¯ãã·ãªãŒãºã®ç·æ¬ãšããŠäž»èŠãªåŠã³ãæ¯ãè¿ããå庫éçšãè©äŸ¡ã»æ¹åããããã®ãã§ãã¯ãªã¹ããæäŸããŸããããã«ããã£ãŒãããã¯ã掻çšããæ¹åçããããã倱æãšãã®åé¿æ¹æ³ãåèè³æã玹ä»ããŸããPython
ã§KPIãç·æ¬ããã¹ã¯ãªãããšãããã¹ã圢åŒã®ãã§ãã¯ãªã¹ããæäŸããŸããç®æšã¯ãéçšãªã¹ã¯ã50%åæžããç¶ç¶çãªæ¹åãä¿é²ããããšã§ãã
ã·ãªãŒãºã®æ¯ãè¿ã
以äžã¯ãååã®èŠç¹ãšææã§ãïŒ
-
ã¬ã€ã¢ãŠãæé©åïŒç¬¬1åïŒïŒ
- åŠã³ïŒã¹ãããã£ã³ã°ãšããŒããããã§ãããã³ã°æéã30%åæžã
- ææïŒç§»åè·é¢ã8kmãã3kmã«ççž®ãã¹ããŒã¹å©çšçã85%ãã95%ã
-
人æç®¡çïŒç¬¬2åïŒïŒ
- åŠã³ïŒKPI远跡ãšã¿ã¹ã¯å²ãåœãŠã§äœæ¥å¹çã20%åäžã
- ææïŒãããã³ã°ã¬ãŒãã50å/æãã80å/æã«ããšã©ãŒã70%æžå°ã
-
è¿å管çïŒç¬¬3åïŒïŒ
- åŠã³ïŒèªååãšWebhookã§åŠçæéã50%åæžã顧客äœéšã25%åäžã
- ææïŒåŠçæéã45åãã10åã«ãã¯ã¬ãŒã ã50ä»¶ãã5ä»¶ã«ã
-
泚æåŠçïŒç¬¬4åïŒïŒ
- åŠã³ïŒåªå ãã¥ãŒãšTMSçµ±åã§åŠçæéã2æéãã30åã«ççž®ã
- ææïŒé éå¹çã20%åäžã梱å ã³ã¹ãã30%åæžã
-
æ£åžïŒç¬¬5åïŒïŒ
- åŠã³ïŒããŒã³ãŒããšãµã€ã¯ã«ã«ãŠã³ãã§æ£åžæéã70%åæžã
- ææïŒåšåº«ç²ŸåºŠã90%ãã99%ãæ¬ åããŒãã«ã
-
容é管çïŒç¬¬6åïŒïŒ
- åŠã³ïŒäºæž¬ãšã¹ããŒã¹æé©åã§èšæè³æã40%åæžã
- ææïŒã¹ããŒã¹å©çšçã75%ãã90%ãå ¥åºåº«å¹çã25%åäžã
çè ã®çµéšã§ã¯ãWMSãæ®µéçã«å°å ¥ããå庫ã¯ãéçšã³ã¹ãã幎é30%åæžãã顧客æºè¶³åºŠã20%åäžãããŸãããéµã¯ãããŒã¿é§åã®æææ±ºå®ãšç¶ç¶çãªãã£ãŒãããã¯ã§ãã
ãããã倱æãšåé¿æ¹æ³
å庫éçšã§é »çºãã倱æãšãã®å¯Ÿçã以äžã«ãŸãšããŸãïŒ
-
ã¬ã€ã¢ãŠãã®ãã¹ïŒ
- 倱æïŒå£²ãçååã奥ã«é 眮ããããã³ã°ã«15åäœèšã
- 察çïŒããŒããããã§é »åºŠãå¯èŠåãææ¬¡ã§ã¹ãããã£ã³ã°ãæŽæ°ã
-
KPIã®æ¬ åŠïŒ
- 倱æïŒããã©ãŒãã³ã¹ã远跡ããããšã©ãŒãæé100ä»¶ã
- 察çïŒKPIïŒãããã³ã°ã¬ãŒãããšã©ãŒã¬ãŒãïŒããªã¢ã«ã¿ã€ã ç£èŠã
-
è¿åã®é
å»¶ïŒ
- 倱æïŒæååŠçã§è¿åã1é±éæ»çã顧客é¢è±ç30%ã
- 察çïŒèªååãšWebhookã§åŠçã10åã«ççž®ã
-
ããŒã¯æã®æ··ä¹±ïŒ
- 倱æïŒãã©ãã¯ãã©ã€ããŒã§ã¹ããŒã¹äžè¶³ã泚æãã£ã³ã»ã«50ä»¶ã
- 察çïŒäºæž¬ã§ã¹ããŒã¹ãäºå確ä¿ãåªå ãã¥ãŒã§æ³šæãåé ã
-
åšåº«å·®ç°ïŒ
- 倱æïŒå¹Ž1åã®æ£åžã§ç²ŸåºŠ80%ãå£²äžæå€±200äžåã
- 察çïŒãµã€ã¯ã«ã«ãŠã³ããšããŒã³ãŒãã§ç²ŸåºŠã99%ã«ã
æ¹åã®ããã®ã¢ãããŒã
éçšãç¶ç¶çã«æ¹åããããã®æŠç¥ã以äžã«ç€ºããŸãïŒ
- ãã£ãŒãããã¯ã®åéïŒäœæ¥å¡ãé¡§å®¢ã®æèŠã鱿¬¡ã§åéã90%ã®åé¡ãæ©æçºèŠã
- ã¢ãžã£ã€ã«éçšïŒå°èŠæš¡ãªå€æŽïŒäŸïŒ1ãŸãŒã³ã®ã¹ãããã£ã³ã°ïŒããã¹ãããå¹æãæ€èšŒã
- èªååã®æ¡å€§ïŒãããã³ã°ãæ£åžãè¿åã®èªååãæ®µéçã«å°å ¥ã
- ãã¬ãŒãã³ã°ïŒäœæ¥å¡ã«WMSã®äœ¿ãæ¹ãæ°ããŒã«ïŒäŸïŒã¢ãã€ã«ã¢ããªïŒãæå°ã
- ããŒã¿åæïŒKPIãåšåº«å·®ç°ãææ¬¡ã§åæãããã«ããã¯ãç¹å®ã
çè ã®ãããžã§ã¯ãã§ã¯ãäœæ¥å¡ã®ãã£ãŒãããã¯ãç¡èŠããçµæãã¬ã€ã¢ãŠã倿Žã倱æããå¹çã10%äœäžããŸããã鱿¬¡ããŒãã£ã³ã°ãå°å ¥åŸãåé¡ã90%æžå°ããå¹çã25%åäžããŸããã
KPIç·æ¬ã¹ã¯ãªãã
以äžã¯ãã·ãªãŒãºå
šäœã®KPIïŒãããã³ã°ã¬ãŒãããšã©ãŒã¬ãŒããåšåº«ç²ŸåºŠãªã©ïŒãéèšããPython
ã¹ã¯ãªããã§ãã
import pandas as pd
import psycopg2
# ããŒã¿ããŒã¹æ¥ç¶
def get_db_connection():
return psycopg2.connect(
dbname="wms_db",
user="postgres",
password="password",
host="localhost",
port="5432"
)
# KPIéèš
def aggregate_kpis():
conn = get_db_connection()
# ãããã³ã°ã¬ãŒãïŒå/æéïŒ
pick_query = """
SELECT e.name, COUNT(t.id) / 8.0 as pick_rate
FROM transactions t
JOIN employees e ON t.employee_id = e.id
WHERE t.type = 'OUT'
AND t.created_at >= CURRENT_DATE - INTERVAL '30 days'
GROUP BY e.name
"""
# ãšã©ãŒã¬ãŒãïŒãã¹/1000ããã¯ïŒ
error_query = """
SELECT e.name, COUNT(t.id) * 1000.0 / NULLIF(COUNT(t2.id), 0) as error_rate
FROM employees e
LEFT JOIN transactions t ON e.id = t.employee_id AND t.is_error = TRUE
LEFT JOIN transactions t2 ON e.id = t2.employee_id AND t2.type = 'OUT'
WHERE t.created_at >= CURRENT_DATE - INTERVAL '30 days'
OR t2.created_at >= CURRENT_DATE - INTERVAL '30 days'
GROUP BY e.name
"""
# åšåº«ç²ŸåºŠ
accuracy_query = """
SELECT AVG(CASE WHEN COALESCE(s.quantity, 0) = il.quantity THEN 1.0 ELSE 0.0 END) * 100 as accuracy
FROM inventory_logs il
LEFT JOIN stocks s ON il.product_id = s.product_id AND il.location_id = s.location_id
WHERE il.scanned_at >= CURRENT_DATE - INTERVAL '30 days'
"""
pick_df = pd.read_sql(pick_query, conn)
error_df = pd.read_sql(error_query, conn)
accuracy_df = pd.read_sql(accuracy_query, conn)
conn.close()
# éèš
summary = pick_df.merge(error_df, on='name', how='outer')
summary['inventory_accuracy'] = accuracy_df['accuracy'].iloc[0]
# çµæãCSVã«ä¿å
summary.to_csv('kpi_summary.csv', index=False)
return summary
if __name__ == '__main__':
kpi_summary = aggregate_kpis()
print(kpi_summary)
ã³ãŒãã®ãã€ã³ã
- KPIéèšïŒãããã³ã°ã¬ãŒãããšã©ãŒã¬ãŒããåšåº«ç²ŸåºŠãéå»30æ¥ã§èšç®ã
- çµ±åïŒåŸæ¥å¡ããšã®ããã©ãŒãã³ã¹ãšå šäœã®åšåº«ç²ŸåºŠãçµåã
- åºåïŒCSVã¬ããŒããçæã管çè åãã
- æ¡åŒµæ§ïŒæ°çŸåŸæ¥å¡ãæ°åãã©ã³ã¶ã¯ã·ã§ã³ãåŠçã
ã¬ããŒãã®æŽ»çš
- äœããã©ãŒãã³ã¹ïŒãããã³ã°ã¬ãŒã50å/ææªæºã®åŸæ¥å¡âãã¬ãŒãã³ã°ã
- é«ãšã©ãŒïŒãšã©ãŒã¬ãŒã5以äžâäœæ¥ããã»ã¹ã調æ»ã
- åšåº«ç²ŸåºŠïŒ99%æªæºâãµã€ã¯ã«ã«ãŠã³ãé »åºŠãå¢ããã
éçšæ¹åãã§ãã¯ãªã¹ã
以äžã¯ãå庫éçšãè©äŸ¡ã»æ¹åããããã®ãã§ãã¯ãªã¹ãã§ãã
# å庫éçšæ¹åãã§ãã¯ãªã¹ã
## 1. ã¬ã€ã¢ãŠã
- [ ] é«é »åºŠååããããã³ã°ãšãªã¢ã«é
眮ãããŠãããïŒïŒ80%以äžã®ã¢ã¯ã»ã¹ããšãªã¢AïŒ
- [ ] ããŒããããã§éå¯ãšãªã¢ãææ¬¡ã§ç¹å®ããŠãããïŒ
- [ ] ã¹ãããã£ã³ã°ã3ã¶æããšã«æŽæ°ããŠãããïŒ
## 2. 人æç®¡ç
- [ ] ãããã³ã°ã¬ãŒããšãšã©ãŒã¬ãŒãããªã¢ã«ã¿ã€ã ã§è¿œè·¡ããŠãããïŒïŒç®æšïŒ80å/æã2ãã¹/1000ããã¯ä»¥äžïŒ
- [ ] ã¿ã¹ã¯å²ãåœãŠãã¹ãã«ãšè² è·ã«åºã¥ããŠãããïŒ
- [ ] äœæ¥å¡ã®ãã£ãŒãããã¯ã鱿¬¡ã§åéããŠãããïŒ
## 3. è¿å管ç
- [ ] è¿ååŠçæéã15åæªæºãïŒ
- [ ] 顧客ã«è¿åã¹ããŒã¿ã¹ããªã¢ã«ã¿ã€ã éç¥ããŠãããïŒ
- [ ] è¿åçç±ãåæããååæ¹åã«æŽ»çšããŠãããïŒ
## 4. 泚æåŠç
- [ ] 泚æåŠçæéã30åæªæºãïŒïŒVIP泚æã¯15å以å
ïŒ
- [ ] TMSãšãªã¢ã«ã¿ã€ã ã§åæããŠãããïŒ
- [ ] 梱å
æãååãµã€ãºã«åºã¥ããŠæé©åããŠãããïŒ
## 5. æ£åž
- [ ] ãµã€ã¯ã«ã«ãŠã³ããé«äŸ¡å€SKUã§é±æ¬¡ãäœäŸ¡å€SKUã§ææ¬¡å®æœããŠãããïŒ
- [ ] åšåº«ç²ŸåºŠã99%以äžãïŒ
- [ ] ããŒã³ãŒããŸãã¯RFIDã§ã¹ãã£ã³ããŒã¿ãèªåèšé²ããŠãããïŒ
## 6. 容é管ç
- [ ] ã¹ããŒã¹å æçããªã¢ã«ã¿ã€ã ç£èŠããŠãããïŒïŒç®æšïŒ80-90%ïŒ
- [ ] éèŠäºæž¬ãææ¬¡ã§å®æœããããŒã¯ã«åããŠãããïŒ
- [ ] åçã©ãã¯ãåé
眮ã§ã¹ããŒã¹ãæé©åããŠãããïŒ
## 7. å
šäœ
- [ ] äœæ¥å¡ãšé¡§å®¢ã®ãã£ãŒãããã¯ã宿åéããŠãããïŒ
- [ ] KPIãææ¬¡ã§åæããããã«ããã¯ãç¹å®ããŠãããïŒ
- [ ] WMSã®æ°æ©èœã3ã¶æããšã«è©äŸ¡ããŠãããïŒ
ãã§ãã¯ãªã¹ãã®ãã€ã³ã
- ç¶²çŸ æ§ïŒã¬ã€ã¢ãŠããã容é管çãŸã§å šé åãã«ããŒã
- å ·äœæ§ïŒå®éç®æšïŒäŸïŒãããã³ã°ã¬ãŒã80å/æã粟床99%ïŒãæç€ºã
- å®çšæ§ïŒç®¡çè ãå³é©çšå¯èœãPDFãã¹ãã¬ããã·ãŒãã«å€æå¯ã
- ç¶ç¶æ§ïŒææ¬¡ãååæããšã®è©äŸ¡ãæšå¥šã
åèè³æ
å庫éçšãããã«æ·±ããããã®ãªãœãŒã¹ã以äžã«ãŸãšããŸãïŒ
-
æžç±ïŒ
- Warehouse Management by Gwynne RichardsïŒWMSã®çè«ãšå®è·µãç¶²çŸ ã
- Lean Warehousing by Kenneth B. AckermanïŒå¹çåã®ãã¹ããã©ã¯ãã£ã¹ã
-
ãªã³ã©ã€ã³ã³ãŒã¹ïŒ
- CourseraãSupply Chain ManagementãïŒããžã¹ãã£ã¯ã¹ã®åºç€ãšå¿çšã
- UdemyãWarehouse Management FundamentalsãïŒWMSã®å®è£ ã¬ã€ãã
-
ã³ãã¥ããã£ïŒ
- Reddit r/supplychainïŒææ°ãã¬ã³ããšå®åè ã®è°è«ã
- LinkedIn Logistics GroupsïŒå°éå®¶ãšã®ãããã¯ãŒãã³ã°ã
-
ããŒã«ïŒ
- Power BIïŒKPIããã·ã¥ããŒãã®é«åºŠãªå¯èŠåã
- TableauïŒã¹ããŒã¹ãåšåº«ããŒã¿ã®åæã
å®éã®ãŠãŒã¹ã±ãŒã¹
以äžã¯ãã·ãªãŒãºã®åŠã³ãé©çšããææã®äŸã§ãïŒ
-
ç·åå¹çåïŒ
- 課é¡ïŒéçšã³ã¹ãã幎é1ååã顧客æºè¶³åºŠ70%ã
- 解決çïŒWMSã§ã¬ã€ã¢ãŠããæ£åžã泚æåŠçãæé©åã
- çµæïŒã³ã¹ãã30%åæžãæºè¶³åºŠã90%ã«åäžã
-
ãªã¹ã¯åæžïŒ
- 課é¡ïŒããŒã¯æã®é å»¶ã40%ãåšåº«å·®ç°200ä»¶/æã
- 解決çïŒãã§ãã¯ãªã¹ãã§åé¡ãäºåæ€åºããã£ãŒãããã¯ã掻çšã
- çµæïŒé å»¶ããŒããå·®ç°ã10ä»¶ã«æžå°ã
-
ã¹ã±ãŒã©ããªãã£ïŒ
- 課é¡ïŒæ°å庫ã®ç«ã¡äžãã«6ã¶æã
- 解決çïŒã·ãªãŒãºã®ã³ãŒããšãã§ãã¯ãªã¹ãããã³ãã¬ãŒãåã
- çµæïŒç«ã¡äžãæéã3ã¶æã«ççž®ã
å®è·µã®ãã€ã³ã
- ãã£ãŒãããã¯ãéèŠïŒäœæ¥å¡ã顧客ã®å£°ãç¡èŠããã鱿¬¡ã§åéã
- å°èŠæš¡ããéå§ïŒ1ãŸãŒã³ã§æ°æ©èœããã¹ãããå¹æãæ€èšŒã
- ããŒã¿é§åïŒKPIãå·®ç°ã¬ããŒããåºã«æææ±ºå®ã
- ç¶ç¶çæ¹åïŒãã§ãã¯ãªã¹ããååæããšã«èŠçŽãã
- ã³ãã¥ããã£æŽ»çšïŒRedditãLinkedInã§ä»ç€Ÿã®ãã¹ããã©ã¯ãã£ã¹ãåŠã¶ã
åŠã³ã®ãã€ã³ã
WMSã¯éçšã®å¿èïŒå¹ççãªå庫ã¯ãããŒã¿ãèªååããã£ãŒãããã¯ã®çµ±åã§æãç«ã¡ãŸããçè ã®ãããžã§ã¯ãã§ã¯ãWMSå°å ¥åã®å庫ã¯ãããã³ã°ãšã©ãŒãæé150ä»¶ãã³ã¹ãã幎é5000äžåè¶ éã§ãããå š6åã®ææ³ãé©çšåŸããšã©ãŒã20ä»¶ã«æžããã³ã¹ãã40%åæžãããŸãããéµã¯ããã§ãã¯ãªã¹ãã§å®æè©äŸ¡ãããã£ãŒãããã¯ãè¿ éã«åæ ããããšã§ãã
ã·ãªãŒãºãæ¯ãè¿ã£ãŠ
ãã®ã·ãªãŒãºã§ã¯ã以äžãã«ããŒããŸããïŒ
- 第1å: å庫ã¬ã€ã¢ãŠãæé©å
- 第2å: 人æç®¡çãšäœæ¥å¹çå
- 第3å: è¿å管çãšé¡§å®¢äœéšã®åäž
- 第4å: 泚æåŠçã®é«éåãšé éå¹ç
- 第5å: æ£åžã®èªååãšåšåº«ç²ŸåºŠåäž
- 第6å: 容é管çãšã¹ããŒã¹æé©å
ãã®ã·ãªãŒãºã¯ãWMSãæŽ»çšããŠå庫ãé©åœããæ¹æ³ã瀺ããŸãããèªè ã®çæ§ããèªç€Ÿã®éçšãè©äŸ¡ãã1ã€ã§ãæ¹åãå§ããããããšãé¡ããŸãã