LoginSignup
18
11

More than 1 year has passed since last update.

Metaより発表された自己監視型学習Data2vecをCIFAR-10で試す

Last updated at Posted at 2022-01-22

"Data2vec" is何?

参考: https://ai.facebook.com/blog/the-first-high-performance-self-supervised-algorithm-that-works-for-speech-vision-and-text
仕組みはいたって簡単です。以下の画像が全てで、特に書くことはないですが簡単な説明を。
Data2vecはラベルのないデータで自己監視型学習をするアルゴリズムで、その特徴はデータの種類を選ばないことです。
以下の参考画像では画像データを使用していますが、信号(音声など)、自然言語などほかのデータにも応用できそうです。

学習の仕組み

image.png
オリジナル画像を入力された学習済み教師モデルの潜在表現を、マスクされた画像を入力した生徒モデルの教師データとして学習します。
これによりラベルのないデータから潜在表現を学習し、後のファインチューンで精度向上が期待できます。

とりあえずCIFAR-10で試してみる

ここから適当にコードの説明しながらコードを張り付けていきますが、そんなのいいからとりあえずコード見たい!の方のためにnotebookのリンクです

データセットクラス

cut_out_sizeでマスクのサイズを決めます

class MyDataset(Dataset):
    def __init__(self, data, cut_out_size=None):
        self.data_list = data
        self.cut_out_size = cut_out_size

    def __len__(self):
        return len(self.data_list)
    
    def __getitem__(self, index):
        one_data = self.data_list[index]
        image = one_data[0]
        image = np.array(image, dtype=np.float32) / 255.0
        image = image.transpose(2, 0, 1)
        image = torch.tensor(image, dtype=torch.float32)
        if self.cut_out_size is not None:
            cut_out_image = self.cut_out(deepcopy(image))
            return image, cut_out_image
        return image, one_data[1]
    
    def cut_out(self, image):
        x_pos = np.random.randint(0, 32 - self.cut_out_size)
        y_pos = np.random.randint(0, 32 - self.cut_out_size)
        image[:, x_pos: x_pos + self.cut_out_size, y_pos: y_pos + self.cut_out_size] = 0
        return image

データセットのインスタンス化

マスクするラベル無し画像はマスクサイズ16に設定してあります

train_data = CIFAR10(root='.', train=True, transform=None, download=True)
valid_data = CIFAR10(root='.', train=False, transform=None, download=True)

cut_out_data = [train_data[i] for i in range(0, 20000)]
train_data = [train_data[i] for i in range(20000, 40000)]

cut_out_dataset = MyDataset(cut_out_data, cut_out_size=16)
train_dataset = MyDataset(train_data)
valid_dataset = MyDataset(valid_data)

cut_out_loader = DataLoader(cut_out_dataset, batch_size=64, shuffle=False)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=False)
valid_loader = DataLoader(valid_dataset, batch_size=64, shuffle=False)

ネットワーク

ResNet18をベースに少し改造しています。
extract_featuresメソッドでは層ごとの表現を返します、ここの表現を生徒モデルは教師モデルから学習することになります。

class CustomNet(nn.Module):
    def __init__(self):
        super(CustomNet, self).__init__()
        self.net = resnet18(pretrained=False, num_classes=10)
    
    def forward(self, image):
        return self.net(image)
    
    def extract_features(self, image):
        features = []
        x = self.net.conv1(image)
        x = self.net.bn1(x)
        x = self.net.relu(x)
        # x = self.net.maxpool(x)

        x_1 = self.net.layer1(x)
        x_2 = self.net.layer2(x_1)
        features.append(x_2)
        x_3 = self.net.layer3(x_2)
        features.append(x_3)
        x_4 = self.net.layer4(x_3)
        features.append(x_4)
        return features

学習とかもろもろ

必要最低限の検証関数と学習関数です
特に書くことはないです。

@torch.no_grad()
def valid(model, valid_loader):
    model.eval()
    n_labels = valid_loader.dataset.__len__()
    acc, mean_loss  = 0, 0
    for images, labels in valid_loader:
        images, labels = images.to(device), labels.to(device)
        pred = model(images)
        loss = functional.cross_entropy(pred, labels)
        acc += sum(pred.cpu().argmax(dim=1) == labels.cpu())
        mean_loss += loss.item()
    acc = acc / n_labels
    mean_loss = mean_loss / n_labels
    return acc, mean_loss


def train(model):
    optimizer = optim.Adam(model.parameters(), lr=0.001)
    max_acc = float('-Inf')
    for epoch in range(1, 8 + 1):
        model.train()
        loss_list = []
        for images, labels in train_loader:
            images, labels = images.to(device), labels.to(device)

            pred = model(images)
            loss = functional.cross_entropy(pred, labels)
            loss_list.append(loss.item())
            
            loss.backward()
            optimizer.step()
            optimizer.zero_grad()

        mean_loss = np.mean(loss_list)
        acc, valid_loss = valid(model, valid_loader)
        if max_acc < acc:
            max_acc = acc
        print(f'INFO: [Train]  epoch: {epoch}  train loss: {mean_loss:.6f}  valid loss: {valid_loss:.6f}  acc: {acc:.3f}')
    return max_acc

Data2vec学習関数

extract_featuresで抽出した潜在表現をMSEにかけそれをlossとして学習します。

def train_data2vec(student_model, teacher_model):
    teacher_model.eval()
    optimizer = optim.Adam(student_model.parameters(), lr=0.001)
    for epoch in range(1, 8 + 1):
        teacher_model.train()
        loss_list = []
        for origin_images, cut_out_image in cut_out_loader:
            origin_images, cut_out_image = origin_images.to(device), cut_out_image.to(device)

            with torch.no_grad():
                teacher_pred = teacher_model.extract_features(origin_images)
            student_pred = student_model.extract_features(cut_out_image)

            for i in range(3):
                if i == 0:
                    loss = functional.mse_loss(student_pred[i], teacher_pred[i])
                else:
                    loss = loss + functional.mse_loss(student_pred[i], teacher_pred[i])
            
            loss_list.append(loss.item())
            
            loss.backward()
            optimizer.step()
            optimizer.zero_grad()

        mean_loss = np.mean(loss_list)
        print(f'INFO: [Data2vec]  epoch: {epoch}  train loss: {mean_loss:.5f}')

学習!

student_model = CustomNet().to(device)
teacher_model = CustomNet().to(device)

teacher_acc = train(teacher_model)
train_data2vec(student_model, teacher_model)
student_acc = train(student_model)
print(f'teacher model accuracy: {teacher_acc:.6f}')
print(f'student model accuracy: {student_acc:.6f}')
INFO: [Train]  epoch: 1  train loss: 1.583418  valid loss: 0.025970  acc: 0.403
INFO: [Train]  epoch: 2  train loss: 1.247156  valid loss: 0.029293  acc: 0.385
INFO: [Train]  epoch: 3  train loss: 1.057758  valid loss: 0.026330  acc: 0.454
INFO: [Train]  epoch: 4  train loss: 0.902117  valid loss: 0.027691  acc: 0.472
INFO: [Train]  epoch: 5  train loss: 0.760756  valid loss: 0.021111  acc: 0.597
INFO: [Train]  epoch: 6  train loss: 0.659506  valid loss: 0.026020  acc: 0.535
INFO: [Train]  epoch: 7  train loss: 0.557459  valid loss: 0.021646  acc: 0.610
INFO: [Train]  epoch: 8  train loss: 0.460098  valid loss: 0.030437  acc: 0.541
INFO: [Data2vec]  epoch: 1  train loss: 2.06769
INFO: [Data2vec]  epoch: 2  train loss: 1.59567
INFO: [Data2vec]  epoch: 3  train loss: 1.42119
INFO: [Data2vec]  epoch: 4  train loss: 1.32030
INFO: [Data2vec]  epoch: 5  train loss: 1.26026
INFO: [Data2vec]  epoch: 6  train loss: 1.21450
INFO: [Data2vec]  epoch: 7  train loss: 1.17425
INFO: [Data2vec]  epoch: 8  train loss: 1.13914
INFO: [Train]  epoch: 1  train loss: 1.255442  valid loss: 0.018170  acc: 0.593
INFO: [Train]  epoch: 2  train loss: 0.893056  valid loss: 0.017616  acc: 0.614
INFO: [Train]  epoch: 3  train loss: 0.683260  valid loss: 0.019145  acc: 0.623
INFO: [Train]  epoch: 4  train loss: 0.542917  valid loss: 0.021964  acc: 0.607
INFO: [Train]  epoch: 5  train loss: 0.430834  valid loss: 0.028602  acc: 0.545
INFO: [Train]  epoch: 6  train loss: 0.333598  valid loss: 0.026022  acc: 0.607
INFO: [Train]  epoch: 7  train loss: 0.243862  valid loss: 0.028986  acc: 0.595
INFO: [Train]  epoch: 8  train loss: 0.190609  valid loss: 0.032847  acc: 0.595
teacher model accuracy: 0.609800
student model accuracy: 0.622900

なんか普通に学習した教師モデルの精度が低いのは無視するとして、Data2vecで事前学習した生徒モデルの精度が教師モデルを超えています。

思うところ

Wav2vecとか、詳しく知らないけどマスクされた画像を復元する事前学習するTransformerとかラベルのないデータから学習する研究とか多くなってきている気がします。
まぁ、実際ラベル付きデータを引っ張ってきたり、ラベル付けするのめんどくさいですしね...

18
11
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
18
11