3
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

行列の式変形まとめ(Woodburyなど)

Last updated at Posted at 2019-05-03

Woodburyの恒等式を始めとした、
「両辺におなじものかけて左辺をガチャガチャやったら右辺になる」
系の行列の式変形の備忘録。

順次追加予定。

Woodburyの恒等式

\begin{equation}
(A+B D C)^{-1}=A^{-1}-A^{-1} B\left(D^{-1}+C A^{-1} B\right)^{-1} C A^{-1}
\end{equation}

特に$D=I$の時

\begin{equation}
(A+B C)^{-1}=A^{-1}-A^{-1} B\left(I+C A^{-1} B\right)^{-1} C A^{-1}
\end{equation}

その他公式

\begin{equation}
\left(P^{-1}+B^{\mathrm{T}} R^{-1} B\right)^{-1} B^{\mathrm{T}} R^{-1}=P B^{\mathrm{T}}\left(B P B^{\mathrm{T}}+R\right)^{-1}
\end{equation}


\begin{equation}
(I+A B)^{-1} A=A(I+B A)^{-1}
\end{equation}
\begin{equation}
(A+B)^{-1}B = I - (A+B)^{-1}A
\end{equation}

特に$B=I$のとき

\begin{equation}
(I+A)^{-1} = I - (I+A)^{-1}A
\end{equation}

参考URL

3
4
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
3
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?