0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

Paper > Multi-view Convolutional Neural Networks for 3D Shape Recognition > 多方向から撮影した画像をCNNに入力してクラス分類する

Last updated at Posted at 2017-06-10

CNN (ConvNet)を用いた3D形状の認識の論文

Hang Su, Subhransu Maji, Evangelos Kalogerakis, Erik Learned-Miller, "Multi-view Convolutional Neural Networks for 3D Shape Recognition", Proceedings of ICCV 2015
http://vis-www.cs.umass.edu/mvcnn/
http://vis-www.cs.umass.edu/mvcnn/docs/su15mvcnn.pdf

  • Figure 1
    • 椅子の画像を多方向から撮影している
    • 各方向に対して二次元画像をCNNに入力
    • それら多方向の結果をView poolingを通してCNNに入力

クラス分類であればこういう方法は使えるのかもしれない。
多変数の関数近似ではどうか。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?