0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

geometry > Link > Shapely > lineとpolygonのintersection > trap:点でなく線分が返される場合がある

Last updated at Posted at 2018-04-29
動作環境
GeForce GTX 1070 (8GB)
ASRock Z170M Pro4S [Intel Z170chipset]
Ubuntu 16.04.4 LTS desktop amd64
TensorFlow v1.7.0
cuDNN v5.1 for Linux
CUDA v8.0
Python 3.5.2
IPython 6.0.0 -- An enhanced Interactive Python.
gcc (Ubuntu 5.4.0-6ubuntu1~16.04.4) 5.4.0 20160609
GNU bash, version 4.3.48(1)-release (x86_64-pc-linux-gnu)
scipy v0.19.1
geopandas v0.3.0
MATLAB R2017b (Home Edition)
ADDA v.1.3b6
gnustep-gui-runtime v0.24.0-3.1
PyMieScatt v1.7.0

Shapely: intersection point between line and polygon in 3D

上記によると、lineとpolygonの配置によっては「交差点の座標位置」ではなく「線分」が返される場合があるようだ。

自分の解きたい問題は「lineとpolygonの交差判定」。上記の症状は問題になるかどうか。

試してみた

傾いた平面の内側だけを保持するコードを実装してみた。

findDipolesInisideStarShape3D_180430.ipynb
import matplotlib.pyplot as plt
from matplotlib import cm, colors
from mpl_toolkits.mplot3d import Axes3D
from pylab import rcParams
import numpy as np
import time
import datetime as dt
from shapely.geometry import LineString, Polygon

"""
v0.1 Apr. 30, 2018
  - cut with plane
=== branched from [showChebyshev_170910.ipynb] v0.4 ===
v0.4 Sep. 10, 2017
  - read ADDA file [IntField-Y]
v0.3 Sep. 10, 2017
  - set colors in X direction
  - increase number of spheres to 3000
v0.2 Sep. 10, 2017
  - show 8 spheres
  - lower the resolution of the sphere (from 100j to 6j)
v0.1 Sep. 10, 2017
  - show 2 spheres
"""

# coding rule: PEP8

rcParams['figure.figsize'] = 15, 10


# reference
# https://stackoverflow.com/questions/31768031/plotting-points-on-the-surface-of-a-sphere-in-pythons-matplotlib


def plot_spheres(xps, yps, zps):
    for elem in zip(xps, yps, zps):
        axp, ayp, azp = elem
        # print(elem)
        dx = x + axp
        dy = y + ayp
        dz = z + azp
        ax.plot_surface(
            dx, dy, dz,  rstride=1, cstride=1, color='c', 
            alpha=1.0, linewidth=0,
            facecolors=plt.cm.Set2((dx - 0) / (50 - 0)))  # 50: arbitrary chosen to set colors
        
    
start_time = time.time()

# Create a sphere
r = 1
pi = np.pi
cos = np.cos
sin = np.sin
phi, theta = np.mgrid[0.0:pi:6j, 0.0:2.0*pi:6j]
x = r*sin(phi)*cos(theta)
y = r*sin(phi)*sin(theta)
z = r*cos(phi)

RAD_OUTER = 10

# Cubdoid
NUM_RESOL = 20
inx = np.linspace(-11, 11, NUM_RESOL)
iny = np.linspace(-11, 11, NUM_RESOL)
inz = np.linspace(-11, 11, NUM_RESOL)
print(inx)
mx, my, mz = np.meshgrid(inx, iny, inz)

# Triangles to define the shape of the particle
DIST_POLY = 7
plys = [ Polygon([[0, DIST_POLY, 0], [DIST_POLY, 0, 0], [DIST_POLY, DIST_POLY, DIST_POLY]])]
# plys += [ Polygon([[0, DIST_POLY, DIST_POLY], [DIST_POLY, 0, DIST_POLY], [0, 0, DIST_POLY]])]

xpar = []
ypar = []
zpar = []
for idx in range(len(mx)):
    for idy in range(len(my)):
        for idz in range(len(mz)):
            inside = True
            for apoly in plys:
                #xs_ray, ys_ray, xs_ray = calc_raylinegeometry()
                a1 = np.array([0.0, 0.0, 0.0])
                a2 = np.array([mx[idx][idy][idz], my[idx][idy][idz], mz[idx][idy][idz]])
                sga = LineString([(a1[0], a1[1], a1[2]), (a2[0], a2[1], a2[2])])
                its = sga.intersection(apoly)
                if its:
                    inside = False
                
            if inside:
                xpar += [mx[idx][idy][idz]]
                ypar += [my[idx][idy][idz]]
                zpar += [mz[idx][idy][idz]]

# Set colours and render
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

SKIP_NUM = 1
xp = xpar[::SKIP_NUM]
yp = ypar[::SKIP_NUM]
zp = zpar[::SKIP_NUM]

print(dt.datetime.now())

plot_spheres(xp, yp, zp)

print(dt.datetime.now())

ax.set_xlim([-30, 30])
ax.set_ylim([-30, 30])
ax.set_zlim([-30, 30])
ax.set_aspect("equal")

ax.view_init(elev=30, azim=0)

plt.tight_layout()
plt.show()

duration = time.time() - start_time
print("%.3f" % duration)

qiita.png

本来は斜めに切断面ができるはずであるが、縦方向に切断されている。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?