GeForce GTX 1070 (8GB)
ASRock Z170M Pro4S [Intel Z170chipset]
Ubuntu 16.04.4 LTS desktop amd64
TensorFlow v1.7.0
cuDNN v5.1 for Linux
CUDA v8.0
Python 3.5.2
IPython 6.0.0 -- An enhanced Interactive Python.
gcc (Ubuntu 5.4.0-6ubuntu1~16.04.4) 5.4.0 20160609
GNU bash, version 4.3.48(1)-release (x86_64-pc-linux-gnu)
scipy v0.19.1
geopandas v0.3.0
MATLAB R2017b (Home Edition)
ADDA v.1.3b6
gnustep-gui-runtime v0.24.0-3.1
PyMieScatt v1.7.0
check_intersection_3D_180512.py v0.1: geometry (3D) > rayとtriangleの交差判定 > check_intersection_3D_180512.py > v0.1 > C: intersect3D_RayTriangle()からの移植, v0.2: 戻り値の変更
処理概要
- 正四角錐の内部を格子状のdipoleで埋め尽くす
importコード
geometry (3D) > rayとtriangleの交差判定 > geometry_intersection_3D_180513.py (v0.3) > テスト用check_intersection_3D_180512.py (v0.5)
の
geometry_intersection_3D_180513.py (v0.3)
- rayとtriangleの交差判定
- rayがtriangleに到達しない場合は「非交差」と判定
アルゴリズム
- 原点(0, 0, 0)から各dipoleの位置までのrayを定義する
- rayが正四角錐を構成する三角形と交差するか判定する
- 交差するdipole: 除外
- 交差しないdipole: 残す
- 全てのdipoleに対して、上記の判定を行う
残ったdipoleは正四角錐の内部にあると思われる。
code v0.1
import numpy as np
import geometry_intersection_3D_180513 as GI3
import sys
'''
v0.1 May, 19, 2018
- add check_vertex_intersecting_ray()
- import [geometry_intersection_3D_180513]
- add get_dipole_positions_in_rectangle()
- add get_regular_tetrahedron_vertices()
'''
def get_regular_tetrahedron_vertices(expand=1.0):
vrt1 = np.array([expand, expand, expand]) # vertex
vrt2 = np.array([-expand, -expand, expand])
vrt3 = np.array([-expand, expand, -expand])
vrt4 = np.array([expand, -expand, -expand])
ret = []
ret += [np.array([vrt1, vrt2, vrt3])]
ret += [np.array([vrt1, vrt3, vrt4])]
ret += [np.array([vrt2, vrt3, vrt4])]
ret += [np.array([vrt1, vrt2, vrt4])]
return np.array(ret)
def get_dipole_positions_in_rectangle(expand=5.0):
mx = np.linspace(-expand, expand, 9)
my = np.linspace(-expand, expand, 9)
mz = np.linspace(-expand, expand, 9)
ret = []
for idx in range(len(mx)):
for idy in range(len(my)):
for idz in range(len(mz)):
ret += [np.array([mx[idx], my[idy], mz[idz]])]
return np.array(ret)
def check_vertex_intersecting_ray(start, end, vertices):
ray = np.array([start, end])
for vertex in vertices:
res, retI = GI3.check_intersection(ray, vertex)
isIntsct = GI3.check_reachingIntersection(ray, vertex)
if isIntsct:
return False
return True
tethdr = get_regular_tetrahedron_vertices(expand=10.0)
dpl = get_dipole_positions_in_rectangle(expand=12.0)
startary = np.array([0, 0, 0])
for elem in dpl:
res = check_vertex_intersecting_ray(startary, elem, tethdr)
if res:
print("[%f, %f, %f]," % (elem[0], elem[1], elem[2]))
実行
$ python3 volfil_tetrahedron_180519.py > test_dipole_180519.tinkercad
上記のコマンドにてTinkercadで使うための配列を作る(下記)。
$ head test_dipole_180519.tinkercad
[-9.000000, -9.000000, 9.000000],
[-9.000000, -6.000000, 6.000000],
[-9.000000, -3.000000, 3.000000],
[-9.000000, 0.000000, 0.000000],
[-9.000000, 3.000000, -3.000000],
[-9.000000, 6.000000, -6.000000],
[-9.000000, 9.000000, -9.000000],
[-6.000000, -9.000000, 6.000000],
[-6.000000, -6.000000, 3.000000],
[-6.000000, -6.000000, 6.000000],
可視化
TinkercardのShape Generatorのスクリプトを作り可視化する。
- 上記のtest_dipole_180519.tinkercad をmain.jsのpositionsの定義に貼る
- 244行目を
for (var oi = 0; oi < 119; oi++) { // oi: outer index
とする (119を指定)- 119: 残ったdipoleの個数
// Convenience Declarations For Dependencies.
// 'Core' Is Configured In Libraries Section.
// Some of these may not be used by this example.
var Conversions = Core.Conversions;
var Debug = Core.Debug;
var Path2D = Core.Path2D;
var Point2D = Core.Point2D;
var Point3D = Core.Point3D;
var Matrix2D = Core.Matrix2D;
var Matrix3D = Core.Matrix3D;
var Mesh3D = Core.Mesh3D;
var Plugin = Core.Plugin;
var Tess = Core.Tess;
var Sketch2D = Core.Sketch2D;
var Solid = Core.Solid;
var Vector2D = Core.Vector2D;
var Vector3D = Core.Vector3D;
// v0.6 Mar. 19, 2018
// - positions[] has geometry for regular tetrahedron
// + obtained using [volfil_tetrahedron_180519.py] v0.1
// v0.5 Mar. 08, 2018
// - positions[] has geometry for BCCA(N=8)
// + BCCA: Ballistic cluster cluster aggregate
// v0.4 Mar. 07, 2018
// - add positions[] to locate each sphere
// v0.3 Mar. 06, 2018
// - add parameter [dist]
// v0.2 Mar. 06, 2018
// - mesh.triangle() uses [vrt1], [vrt2], [vrt3]
// v0.1 Mar. 06, 2018
// - branched from [Shape Generator] > [Sphere]
// Template Code:
params = [
{ "id": "r", "displayName": "Radius", "type": "length", "rangeMin": 1.0, "rangeMax": 100.0, "default": 10.0 },
{ "id": "dist", "displayName": "Distance", "type": "length", "rangeMin": 1.0, "rangeMax": 500.0, "default": 20.0 }
];
function process(params) {
var r = params["r"];
var dist = params["dist"];
var ndivs = Tess.circleDivisions(r);
var tau = 0.8506508084;
var one = 0.5257311121;
var lod = 0;
while(ndivs > 6){
lod++;
ndivs /= 2;
}
Debug.log(Tess.circleDivisions(r) + " " + lod);
var v = [
[ tau, one, 0.0 ],
[-tau, one, 0.0 ],
[-tau,-one, 0.0 ],
[ tau,-one, 0.0 ],
[ one, 0.0, tau ],
[ one, 0.0,-tau ],
[-one, 0.0,-tau ],
[-one, 0.0, tau ],
[ 0.0, tau, one ],
[ 0.0,-tau, one ],
[ 0.0,-tau,-one ],
[ 0.0, tau,-one ]
];
var tris = [
[ v[4], v[8], v[7] ],
[ v[4], v[7], v[9] ],
[ v[5], v[6],v[11] ],
[ v[5],v[10], v[6] ],
[ v[0], v[4], v[3] ],
[ v[0], v[3], v[5] ],
[ v[2], v[7], v[1] ],
[ v[2], v[1], v[6] ],
[ v[8], v[0],v[11] ],
[ v[8],v[11], v[1] ],
[ v[9],v[10], v[3] ],
[ v[9], v[2],v[10] ],
[ v[8], v[4], v[0] ],
[v[11], v[0], v[5] ],
[ v[4], v[9], v[3] ],
[ v[5], v[3],v[10] ],
[ v[7], v[8], v[1] ],
[ v[6], v[1],v[11] ],
[ v[7], v[2], v[9] ],
[ v[6],v[10], v[2] ]
];
// defined in radius unit
// for touching bisphere, set [2]
var positions = [
// from [volfil_tetrahedron_180519.py] v0.1
[-9.000000, -9.000000, 9.000000],
[-9.000000, -6.000000, 6.000000],
[-9.000000, -3.000000, 3.000000],
[-9.000000, 0.000000, 0.000000],
[-9.000000, 3.000000, -3.000000],
[-9.000000, 6.000000, -6.000000],
[-9.000000, 9.000000, -9.000000],
[-6.000000, -9.000000, 6.000000],
[-6.000000, -6.000000, 3.000000],
[-6.000000, -6.000000, 6.000000],
[-6.000000, -6.000000, 9.000000],
[-6.000000, -3.000000, 0.000000],
[-6.000000, -3.000000, 3.000000],
[-6.000000, -3.000000, 6.000000],
[-6.000000, 0.000000, -3.000000],
[-6.000000, 0.000000, 0.000000],
[-6.000000, 0.000000, 3.000000],
[-6.000000, 3.000000, -6.000000],
[-6.000000, 3.000000, -3.000000],
[-6.000000, 3.000000, 0.000000],
[-6.000000, 6.000000, -9.000000],
[-6.000000, 6.000000, -6.000000],
[-6.000000, 6.000000, -3.000000],
[-6.000000, 9.000000, -6.000000],
[-3.000000, -9.000000, 3.000000],
[-3.000000, -6.000000, 0.000000],
[-3.000000, -6.000000, 3.000000],
[-3.000000, -6.000000, 6.000000],
[-3.000000, -3.000000, -3.000000],
[-3.000000, -3.000000, 0.000000],
[-3.000000, -3.000000, 3.000000],
[-3.000000, -3.000000, 6.000000],
[-3.000000, -3.000000, 9.000000],
[-3.000000, 0.000000, -6.000000],
[-3.000000, 0.000000, -3.000000],
[-3.000000, 0.000000, 0.000000],
[-3.000000, 0.000000, 3.000000],
[-3.000000, 0.000000, 6.000000],
[-3.000000, 3.000000, -9.000000],
[-3.000000, 3.000000, -6.000000],
[-3.000000, 3.000000, -3.000000],
[-3.000000, 3.000000, 0.000000],
[-3.000000, 3.000000, 3.000000],
[-3.000000, 6.000000, -6.000000],
[-3.000000, 6.000000, -3.000000],
[-3.000000, 6.000000, 0.000000],
[-3.000000, 9.000000, -3.000000],
[0.000000, -9.000000, 0.000000],
[0.000000, -6.000000, -3.000000],
[0.000000, -6.000000, 0.000000],
[0.000000, -6.000000, 3.000000],
[0.000000, -3.000000, -6.000000],
[0.000000, -3.000000, -3.000000],
[0.000000, -3.000000, 0.000000],
[0.000000, -3.000000, 3.000000],
[0.000000, -3.000000, 6.000000],
[0.000000, 0.000000, -9.000000],
[0.000000, 0.000000, -6.000000],
[0.000000, 0.000000, -3.000000],
[0.000000, 0.000000, 0.000000],
[0.000000, 0.000000, 3.000000],
[0.000000, 0.000000, 6.000000],
[0.000000, 0.000000, 9.000000],
[0.000000, 3.000000, -6.000000],
[0.000000, 3.000000, -3.000000],
[0.000000, 3.000000, 0.000000],
[0.000000, 3.000000, 3.000000],
[0.000000, 3.000000, 6.000000],
[0.000000, 6.000000, -3.000000],
[0.000000, 6.000000, 0.000000],
[0.000000, 6.000000, 3.000000],
[0.000000, 9.000000, 0.000000],
[3.000000, -9.000000, -3.000000],
[3.000000, -6.000000, -6.000000],
[3.000000, -6.000000, -3.000000],
[3.000000, -6.000000, 0.000000],
[3.000000, -3.000000, -9.000000],
[3.000000, -3.000000, -6.000000],
[3.000000, -3.000000, -3.000000],
[3.000000, -3.000000, 0.000000],
[3.000000, -3.000000, 3.000000],
[3.000000, 0.000000, -6.000000],
[3.000000, 0.000000, -3.000000],
[3.000000, 0.000000, 0.000000],
[3.000000, 0.000000, 3.000000],
[3.000000, 0.000000, 6.000000],
[3.000000, 3.000000, -3.000000],
[3.000000, 3.000000, 0.000000],
[3.000000, 3.000000, 3.000000],
[3.000000, 3.000000, 6.000000],
[3.000000, 3.000000, 9.000000],
[3.000000, 6.000000, 0.000000],
[3.000000, 6.000000, 3.000000],
[3.000000, 6.000000, 6.000000],
[3.000000, 9.000000, 3.000000],
[6.000000, -9.000000, -6.000000],
[6.000000, -6.000000, -9.000000],
[6.000000, -6.000000, -6.000000],
[6.000000, -6.000000, -3.000000],
[6.000000, -3.000000, -6.000000],
[6.000000, -3.000000, -3.000000],
[6.000000, -3.000000, 0.000000],
[6.000000, 0.000000, -3.000000],
[6.000000, 0.000000, 0.000000],
[6.000000, 0.000000, 3.000000],
[6.000000, 3.000000, 0.000000],
[6.000000, 3.000000, 3.000000],
[6.000000, 3.000000, 6.000000],
[6.000000, 6.000000, 3.000000],
[6.000000, 6.000000, 6.000000],
[6.000000, 6.000000, 9.000000],
[6.000000, 9.000000, 6.000000],
[9.000000, -9.000000, -9.000000],
[9.000000, -6.000000, -6.000000],
[9.000000, -3.000000, -3.000000],
[9.000000, 0.000000, 0.000000],
[9.000000, 3.000000, 3.000000],
[9.000000, 6.000000, 6.000000],
[9.000000, 9.000000, 9.000000]
];
function norm(a) {
var l = Math.sqrt(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]);
return [ a[0]/l, a[1]/l, a[2]/l ];
}
function sum(a, b) {
return [ (a[0]+b[0]), (a[1]+b[1]), (a[2]+b[2]) ];
}
function xf(a, s) {
return [ a[0]*s, a[1]*s, a[2]*s + s ];
}
for (var i = 0; i < lod; i++) {
var ntris = [];
for(var j = 0; j < tris.length; j++) {
var ma = norm(sum(tris[j][0], tris[j][1]));
var mb = norm(sum(tris[j][1], tris[j][2]));
var mc = norm(sum(tris[j][2], tris[j][0]));
ntris.push([tris[j][0], ma, mc]);
ntris.push([tris[j][1], mb, ma]);
ntris.push([tris[j][2], mc, mb]);
ntris.push([ma, mb, mc]);
}
tris = ntris;
}
var mesh = new Mesh3D();
for (var oi = 0; oi < 119; oi++) { // oi: outer index
for (var ii = 0; ii < tris.length; ii++) {
var vrt1 = tris[ii][0];
var vrt2 = tris[ii][1];
var vrt3 = tris[ii][2];
var xf1 = xf(vrt1,r);
var xf2 = xf(vrt2,r);
var xf3 = xf(vrt3,r);
for (var pi = 0; pi < 3; pi++) { // pi: position index
xf1[pi] += positions[oi][pi] * dist / 2; // 2: for positions is defined in radisu unit
xf2[pi] += positions[oi][pi] * dist / 2;
xf3[pi] += positions[oi][pi] * dist / 2;
}
mesh.triangle(xf1, xf2, xf3);
}
}
var solid = Solid.make(mesh);
return solid;
}
作ったShapeを貼ったのが以下。
[3Dを表示]を選択すると、回転させることができる。
関連
上記に対する2D版の処理は下記となる。
geometry > star shape(星形)の内部をdipoleでfillする > findDipolesInisideStarShape_180429 v0.2 > shapely使用 > 1秒で完了 (MESH_RESOL=50)
code v0.2 > Numpy用ファイル出力
- Numpyでgeonfromtxt()で読めるファイル出力
- [dipole_180520.res]
import numpy as np
import geometry_intersection_3D_180513 as GI3
import sys
import os
'''
v0.2 May, 20, 2018
- output as file for reading with Numpy genfromtxt()
+ add [OUTPUT]
+ remove [OUTPUT] before file save
v0.1 May, 19, 2018
- add check_vertex_intersecting_ray()
- import [geometry_intersection_3D_180513]
- add get_dipole_positions_in_rectangle()
- add get_regular_tetrahedron_vertices()
'''
OUTFILE = 'dipole_180520.res' # for Numpy genfromtxt()
def get_regular_tetrahedron_vertices(expand=1.0):
vrt1 = np.array([expand, expand, expand]) # vertex
vrt2 = np.array([-expand, -expand, expand])
vrt3 = np.array([-expand, expand, -expand])
vrt4 = np.array([expand, -expand, -expand])
ret = []
ret += [np.array([vrt1, vrt2, vrt3])]
ret += [np.array([vrt1, vrt3, vrt4])]
ret += [np.array([vrt2, vrt3, vrt4])]
ret += [np.array([vrt1, vrt2, vrt4])]
return np.array(ret)
def get_dipole_positions_in_rectangle(expand=5.0):
mx = np.linspace(-expand, expand, 9)
my = np.linspace(-expand, expand, 9)
mz = np.linspace(-expand, expand, 9)
ret = []
for idx in range(len(mx)):
for idy in range(len(my)):
for idz in range(len(mz)):
ret += [np.array([mx[idx], my[idy], mz[idz]])]
return np.array(ret)
def check_vertex_intersecting_ray(start, end, vertices):
ray = np.array([start, end])
for vertex in vertices:
res, retI = GI3.check_intersection(ray, vertex)
isIntsct = GI3.check_reachingIntersection(ray, vertex)
if isIntsct:
return False
return True
tethdr = get_regular_tetrahedron_vertices(expand=10.0)
dpl = get_dipole_positions_in_rectangle(expand=12.0)
startary = np.array([0, 0, 0])
os.remove(OUTFILE)
with open(OUTFILE, 'ab') as wfp:
for elem in dpl:
res = check_vertex_intersecting_ray(startary, elem, tethdr)
if res:
print("[%f, %f, %f]," % (elem[0], elem[1], elem[2]))
wrk = [elem] # to avoid element-wise-LF for 1-D array
np.savetxt(wfp, wrk, fmt='%.7f', delimiter=' ')