0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

Jupyter / matplotlib > 1Dの数値を2Dに変換して画像化 > v0.1 [失敗] / v0.2 [成功]

Last updated at Posted at 2016-12-23
動作環境
GeForce GTX 1070 (8GB)
ASRock Z170M Pro4S [Intel Z170chipset]
Ubuntu 14.04 LTS desktop amd64
TensorFlow v0.11
cuDNN v5.1 for Linux
CUDA v8.0
Python 2.7.6
IPython 5.1.0 -- An enhanced Interactive Python.

関連 http://qiita.com/7of9/items/c91db1a7d193d4857c6b

http://qiita.com/7of9/items/4aa9f546a4ff1bf2e1aa
で読み込んでいる1次元(27984要素)の値をmatplotlibで表示しようとしている。

1次元データから2次元画像を作る方法を検討中。
とりあえず乱数リストを画像化してみる。

v0.1

Jupyterコード

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm

data_1d = np.random.rand(22500)
print(data_1d)
data_2d = np.reshape(data_1d, (-1,2))
print (data_2d)

plt.imshow(data_2d, extent=(0,150,0,150),cmap=cm.gist_rainbow)
plt.show()

qiita.png

横線が入っているので、何か間違っているようだ。

v0.2

参考 http://www.kamishima.net/mlmpyja/nbayes2/shape.html

np.reshapeする時, (-1,2)でなく, (150,150)が正しかった。

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm

data_1d = np.random.rand(22500)
print(data_1d)
data_2d = np.reshape(data_1d, (150,150))

plt.imshow(data_2d, extent=(0,150,0,150),cmap=cm.gist_rainbow)
plt.show()

qiita.png

できた。ついてる。

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?