0
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

Building OpenPose (Pytorch_Realtime_Multi-Person_Pose_Estimation) environment on Docker : training part

Last updated at Posted at 2021-01-15

過去の記事

PC上に学習環境を直接構築する方法は以下を参照
修正中

前提条件

ローカルマシンにGPUの環境が構築されている前提とします.
(nvidia-smiでGPUが確認できる)

Dockerのインストールは,以下のサイトなどを参考に...
https://qiita.com/ttsubo/items/c97173e1f04db3cbaeda

Dockerの基本操作

以下参照:
https://qiita.com/19503/private/a6f0d43c8cfc44748f62

Dockerコンテナを用いた環境構築

実行マシンのGPUやCUDAの世代の影響を避けるため,実行環境のGPUを直接操作するのではなく,以下の様にDockerコンテナを利用した方法を推奨します.


# 1.ホストPC上の操作
# setup COCO data(coco2017)
COCO_DIR=/home/your_work_dir/your_coco_data_dir
mkdir $COCO_DIR/images
cd $COCO_DIR/images
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
cd $COCO_DIR
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip

cd /home/your_work_dir
git clone https://github.com/pytorch/pytorch.git -b v0.2.0
cd pytorch
# Dockerfileを,後述するlast-one-Docerfileの様に編集(名前はDockerfileから変更しない事)
docker build -t last-one:v0.01 -f ./Dockerfile .
# --ipc="host"はホストPCとコンテナ間でメモリを共有するオプション,これが無いとメモリ不足により実行中に落ちる(以下参考)
# https://discuss.pytorch.org/t/unable-to-write-to-file-torch-18692-1954506624/9990
docker run --gpus all --ipc="host" -v /home/your_work_dir/your_coco_data_dir:/home/dat -itd --name last-one_cont last-one:v0.01
docker exec -it last-one_cont /bin/bash

# 2.Dockerコンテナでの操作

pip intall pycocotools
cd /home/dev/Pytorch_Realtime_Multi-Person_Pose_Estimation/preprocessing
COCO_DIR=/home/dat

apt-get update
pip install numpy==1.16.6 opencv-python==3.1.0.0 easydict==1.9

python generate_json_mask.py --ann_path $COCO_DIR/annotations/person_keypoints_train2017.json --json_path out/train2017_json.json --mask_dir out/train2017_maskdir --filelist_path out/train2017_filelst.txt --masklist_path out/train2017_masklst.txt
python generate_json_mask.py --ann_path $COCO_DIR/annotations/person_keypoints_val2017.json --json_path out/val2017_json.json --mask_dir out/val2017_maskdir --filelist_path out/val2017_filelst.txt --masklist_path out/val2017_masklst.txt

# if you encountered "import _tkinter # If this fails your Python may not be configured for Tk" error, you must install tk-dev as below
# apt-get update
# apt-get install tk-dev

# 関連ファイルのパスをviエディタで編集(以下例)
vi train2017_filelst.txt
%s/^/\/home\/dat\/images\/train2017\//g
vi val2017_filelst.txt
%s/^/\/home\/dat\/images\/val2017\//g
vi train2017_masklst.txt
%s/^/\/home\/dev\/Pytorch_Realtime_Multi-Person_Pose_Estimation\/preprocessing\//g
vi val2017_masklst.txt
%s/^/\/home\/dev\/Pytorch_Realtime_Multi-Person_Pose_Estimation\/preprocessing\//g

# --gpuオプションは自身のGPU環境によって変更が必要,かつ過去記事にしたがってtrain/train_pose.py l255のCUDA_VISIBLE_DEVICESを修正
TRAIN_DIR=/home/dev/Pytorch_Realtime_Multi-Person_Pose_Estimation/preprocessing/out
python train_pose.py --gpu 0 1 2 --train_dir $TRAIN_DIR/train2017_filelst.txt $TRAIN_DIR/train2017_masklst.txt $TRAIN_DIR/train2017_json.json --val_dir $TRAIN_DIR/val2017_filelst.txt $TRAIN_DIR/val2017_masklst.txt $TRAIN_DIR/val2017_json.json --config config.yml > $LOG


last-one-Docerfile
FROM nvidia/cuda:8.0-cudnn6-devel-ubuntu16.04

RUN echo "deb http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64 /" > /etc/apt/sources.list.d/nvidia-ml.list

RUN apt-get update && apt-get install -y --no-install-recommends \
         build-essential \
         cmake \
         git \
         wget \
         vim \
         ca-certificates \
         libjpeg-dev \
         libpng-dev &&\
     rm -rf /var/lib/apt/lists/*

RUN wget https://repo.anaconda.com/archive/Anaconda2-2.4.0-Linux-x86_64.sh -O ./anaconda.sh && \
     chmod +x ./anaconda.sh && \
     ./anaconda.sh -b -p /opt/conda && \
     rm ./anaconda.sh && \
     /opt/conda/bin/conda install conda-build && \
     /opt/conda/bin/conda create -y --name pytorch-py27 python=2.7.13 numpy pyyaml scipy ipython mkl&& \
     /opt/conda/bin/conda clean -ya

ENV PATH /opt/conda/envs/pytorch-py27/bin:$PATH
RUN conda install --name pytorch-py27 -c soumith magma-cuda80
# This must be done before pip so that requirements.txt is available
WORKDIR /opt/pytorch
COPY . .

# install torch
RUN TORCH_CUDA_ARCH_LIST="3.5 5.2 6.0 6.1+PTX" TORCH_NVCC_FLAGS="-Xfatbin -compress-all" \
    CMAKE_PREFIX_PATH="$(dirname $(which conda))/../" \
    pip install -v .

# install torchvision
RUN git clone https://github.com/pytorch/vision.git -b v0.2.0
WORKDIR /opt/pytorch/vision
RUN pip install -v .

# clone OpenPose code
WORKDIR /home/dev
RUN git clone https://github.com/last-one/Pytorch_Realtime_Multi-Person_Pose_Estimation.git

# setup coco tools
RUN git clone https://github.com/cocodataset/cocoapi.git

RUN pip install pandas

WORKDIR /workspace
0
2
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?