1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

streamlit勉強Advent Calendar 2020

Day 10

streamlitで気象データを可視化

Last updated at Posted at 2020-12-09

住んだことがある市町村、
どこの気候が過ごしやすいのか知りたくて可視化してみました。

作ったもの

スクリーンショット 2020-12-10 13.35.05.png

データ取得

https://www.data.jma.go.jp/gmd/risk/obsdl/
※取得後、数行削ってから読み込んでます。

コード

import streamlit as st
import pandas as pd

df = pd.read_csv("./data_edit.csv", encoding="utf-8", header=None)

df_T = df.T
# df.columns=df.iloc[0]

# df_T.reindex(df_T.index.drop("Unnamed: 0"))
df_T.iloc[0,0] =""
df_T.columns = df_T.iloc[0]
df_T = df_T.iloc[1:]

df_T = df_T.drop_duplicates(subset=["","年月日"])

df_T = df_T[df_T["年月日"].str.startswith("最高気温")]

df_TT = df_T.T
df_TT
df_line = df_TT.iloc[2:].reset_index(drop=True).drop(columns=[25]).astype(float)
st.write(df_line)

st.line_chart(df_line))
1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?