78
73

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

matplotlib (+ pandas) によるデータ可視化の方法 (3)

Posted at

前々回前回に引き続いて matplotlib によるデータ可視化に焦点を当てていきます。今回から pandas との組み合わせによる合わせ技となります。

折れ線グラフ

シリーズやデータフレームのオブジェクトをプロットすると、デフォルトでは折れ線グラフとなります。

import numpy as np
from pandas import *
from pylab import *
import matplotlib.pyplot as plt
from numpy.random import randn

# シリーズの単純なプロッティング
s = Series(np.random.randn(10).cumsum(), index=np.arange(0, 100, 10))
s.plot()

plt.show()
plt.savefig("image.png")

image.png

# データフレームの単純なプロッティング
df = DataFrame(np.random.randn(10, 4).cumsum(0),
               columns=['A','B','C','D'],
               index=np.arange(0, 100, 10))
df.plot()
plt.show()
plt.savefig("image2.png")

image2.png

pandas のプロット用のメソッドの大半にはオプションで ax パラメーターに matplotlib のサブプロットオブジェクトを指定できます。

plot に指定できるオプションの一覧としては以下の公式ドキュメントを参照するのが良いでしょう。

pandas.DataFrame.plot
http://pandas.pydata.org/pandas-docs/version/0.13.1/generated/pandas.DataFrame.plot.html

棒グラフ

とくによく利用するのは kind でこれは線種を指定できます。 kind = 'bar' とすると棒グラフになります。

# シリーズを可視化する
data = Series(np.random.randn(16), index=list('abcdefghijklmnop'))
# 縦の棒グラフ
data.plot(kind='bar', ax=axes[0], color='k', alpha=0.7)
# 横の棒グラフ
data.plot(kind='barh', ax=axes[1], color='r', alpha=0.6)

plt.show()
plt.savefig("image3.png")

image3.png

データフレームを棒グラフにした場合、各行の値はグループとしてまとめられます。

# データフレームを可視化する
df = DataFrame(np.random.randn(6, 4),
               index=['1','2','3','4','5','6'],
               columns=Index(['A','B','C','D'], name='Genus'))

print( df )
# =>
# Genus         A         B         C         D
# 1     -0.350817 -0.017378 -0.991230 -0.223608
# 2      0.478712 -0.472764  0.677484 -0.852312
# 3      1.402219  0.381440  0.370080  0.682125
# 4     -1.733590  0.296124 -0.014841  1.140705
# 5      0.373399  1.150718  1.341984  1.040759
# 6     -0.013301 -0.202793 -1.367493 -0.572954

df.plot()
plt.show()
plt.savefig("image4.png")

df.plot(kind='bar') # 棒グラフにする
plt.show(grid=False, alpha=0.8)
plt.savefig("image5.png")

df.plot(kind='barh', stacked=True, alpha=0.5) # 積み上げ棒グラフにする (stacked オプション)
plt.show()
plt.savefig("image6.png")


image4.png

image5.png

image6.png

金融データを可視化する

以前の金融データの分析とその可視化の回で使った csv を利用し pandas + matplotlib でプロッティングしてみます。

df = read_csv('stock_px.csv') # CSV を読み込む

print( df.head(10) ) # データフレームの先頭
# =>
# [6 rows x 4 columns]
#             Unnamed: 0  AAPL   MSFT    XOM     SPX
# 0  2003-01-02 00:00:00  7.40  21.11  29.22  909.03
# 1  2003-01-03 00:00:00  7.45  21.14  29.24  908.59
# 2  2003-01-06 00:00:00  7.45  21.52  29.96  929.01
# 3  2003-01-07 00:00:00  7.43  21.93  28.95  922.93
# 4  2003-01-08 00:00:00  7.28  21.31  28.83  909.93
# 5  2003-01-09 00:00:00  7.34  21.93  29.44  927.57
# 6  2003-01-10 00:00:00  7.36  21.97  29.03  927.57
# 7  2003-01-13 00:00:00  7.32  22.16  28.91  926.26
# 8  2003-01-14 00:00:00  7.30  22.39  29.17  931.66
# 9  2003-01-15 00:00:00  7.22  22.11  28.77  918.22

df.plot()
plt.show()
plt.savefig("image7.png")

image7.png

CSV のデータをいとも簡単に可視化することができました。

78
73
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
78
73

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?