0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

TensorFlow > sine curveの学習 > weight,biasからの学習結果の再現 v0.3 (失敗) / python > pass: no operation

Last updated at Posted at 2016-12-11
動作環境
GeForce GTX 1070 (8GB)
ASRock Z170M Pro4S [Intel Z170chipset]
Ubuntu 14.04 LTS desktop amd64
TensorFlow v0.11
cuDNN v5.1 for Linux
CUDA v8.0
Python 2.7.6
IPython 5.1.0 -- An enhanced Interactive Python.

関連 http://qiita.com/7of9/items/b364d897b95476a30754

sine curveを学習した時のweightとbiasをもとに自分でネットワークを再現して出力を計算しようとしている。

http://qiita.com/7of9/items/b52684b0df64b6561a48
の続き

http://qiita.com/7of9/items/7e45a69c822900a80c67
においてsine curveの学習失敗を補正できたようなので、再度model_variables.npyから読み込んだweightとbiasからsine curveを作ってみる。

code v0.3

  • v0.2 : applyActFncを追加して、sigmoid / linearの切り替えに対応
  • v0.3
    • calc_sigmoid()の間違い修正
    • デバッグ用出力関数を追加。デバッグ不要時にコメントアウトする
      • コメントアウト時のエラー回避のため、no operationに相当する passを使用 : link
reproduce_sine.py
'''
v0.3 Dec. 11, 2016
	- add output_debugPrint()
	- fix bug > calc_sigmoid() was using positive for exp()
v0.2 Dec. 10, 2016
	- calc_conv() takes [applyActFnc] argument
v0.1 Dec. 10, 2016
	- add calc_sigmoid()
	- add fully_connected network
	- add input data for sine curve
=== [read_model_var.py] branched to [reproduce_sine.py] ===

v0.4 Dec. 10, 2016
	- add 2x2 network example
v0.3 Dec. 07, 2016
	- calc_conv() > add bias
v0.2 Dec. 07, 2016
	- fix calc_conv() treating src as a list
v0.1 Dec. 07, 2016
	- add calc_conv()
'''

import numpy as np
import math
import sys

model_var = np.load('model_variables.npy')


# to ON/OFF debug print at one place
def output_debugPrint(str): 
#	print(str)
	pass # no operation

output_debugPrint( ("all shape:",(model_var.shape)) )

def calc_sigmoid(x):
	return 1.0 / (1.0 + math.exp(-x))

def calc_conv(src, weight, bias, applyActFnc):
	wgt = weight.shape
#	print wgt # debug
	#conv = list(range(bias.size))
	conv = [0.0] * bias.size
	# weight
	for idx1 in range(wgt[0]):
		for idx2 in range(wgt[1]):
			conv[idx2] = conv[idx2] + src[idx1] * weight[idx1,idx2]
	# bias
	for idx2 in range(wgt[1]):
		conv[idx2] = conv[idx2] + bias[idx2]
	# activation function
	if applyActFnc:
		for idx2 in range(wgt[1]):
			conv[idx2] = calc_sigmoid(conv[idx2])

	return conv # return list

inpdata = np.linspace(0, 1, 30).astype(float).tolist()


for din in inpdata:
	# input layer (7 node)
	inlist = [ din ]
	outdata = calc_conv(inlist, model_var[0], model_var[1], applyActFnc=True)
	# hidden layer 1 (7 node)
	outdata = calc_conv(outdata, model_var[2], model_var[3], applyActFnc=True)
	# hidden layer 2 (7 node)
	outdata = calc_conv(outdata, model_var[4], model_var[5], applyActFnc=True)
	# output layer (1 node)
	outdata = calc_conv(outdata, model_var[6], model_var[7], applyActFnc=False)
	dout = outdata[0] # ouput is 1 node
	print '%.3f, %.3f' % (din,dout)

実行
$ python reproduce_sine.py  > res.reprod_sine

Jupyter表示

以下を比較した。

  • TensorFlowのpredictionの結果
  • model_variables.npyからのweight,biasを使って計算
%matplotlib inline

import numpy as np
import matplotlib.pyplot as plt

data1 = np.loadtxt('res.161210_1958.cut', delimiter=',')
inp1 = data1[:,0]
out1 = data1[:,1]
data2 = np.loadtxt('res.reprod_sine', delimiter=',')
inp2 = data2[:,0]
out2 = data2[:,1]

fig = plt.figure()
ax1 = fig.add_subplot(2,1,1)
ax2 = fig.add_subplot(2,1,2)

ax1.scatter(inp1, out1, label='TensorFlow prediction')
ax2.scatter(inp2, out2, label='from model_var.npy')

#ax1.set_title('First line plot')
ax1.set_xlabel('x')
ax1.set_ylabel('sine(x) prediction')
ax1.grid(True)
ax1.legend()
ax1.set_xlim([0,1.0])

ax2.set_xlabel('x')
ax2.set_ylabel('sine(x) reproduced')
ax2.grid(True)
ax2.legend()
ax2.set_xlim([0,1.0])

fig.show()

When he (Alladin) first rubs the lamp. The Genie appears,

イデよsine curve。

qiita.png

もうちょっと。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?