96
83

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

NumPy で回帰分析をする

Last updated at Posted at 2014-04-23

回帰分析については以前にも線形回帰の話題で触れました。

NumPy で回帰分析

では実際にコードを書いて回帰分析をおこなってみます。 np.polyfitnp.polyval を利用すると n 次式で 2 変数の回帰分析をおこなえます。

詳細は上記のリンクからドキュメントを参照したほうが良いのですが、次の通りとなります。

  • np.polyfit(x, y, n) : n 次式で 2 変数の回帰分析
  • np.polyval(p, t) : p で表される多項式に t を代入し値を計算
import numpy as np
import matplotlib.pyplot as plt

x = np.array([0.0, 1.0, 2.0, 3.0,  4.0,  5.0])
y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
z = np.polyfit(x, y, 3)

p = np.poly1d(z)
p30 = np.poly1d(np.polyfit(x, y, 30))
xp = np.linspace(-2, 6, 100)

plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '*')
plt.ylim(-2,2)
plt.show()
plt.savefig('image.png')

image.png

このとき
1 次式の場合は p[0]: 傾き、 p[1]: 切片となります。
N 次式なら p[0]t*(N-1) + p[1]t*(N-2) + ... + p[N-2]*t + p[N-1] です。

最小二乗法についても以前に触れましたが、データ列 {(x_1, y_1), (x_2, y_2), ... (x_n, y_n)} に対して残差平方和を最小とするモデルを決定します。このとき観測値の誤差分布の分散が一定であると仮定します。

重回帰分析

独立変数 m 個のモデルでの回帰分析が重回帰分析です。

z = ax + by + c

という式を求めたいとします。

x = [9.83, -9.97, -3.91, -3.94, -13.67, -14.04, 4.81, 7.65, 5.50, -3.34]
y = [-5.50, -13.53, -1.23, 6.07, 1.94, 2.79, -5.43, 15.57, 7.26, 1.34]
z = [635.99, 163.78, 86.94, 245.35, 1132.88, 1239.55, 214.01, 67.94, -1.48, 104.18]

import numpy as np
from scipy import linalg as LA

N = len(x)
G = np.array([x, y, np.ones(N)]).T
result = LA.solve(G.T.dot(G), G.T.dot(z))

print(result)

これにより
[ -30.02043308 3.55275314 322.33397214]
が求まりますから

z = -30.0x + 3.55y + 322

という方程式が求まり、これが解となります。

参考

2013年 プログラマの為の数学勉強会 資料
http://nineties.github.io/math-seminar/

96
83
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
96
83

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?