33
34

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

とりいそぎ{PythonInR}でRからTensorFlowを動かしてみた

Last updated at Posted at 2015-11-10

 GoogleのTensorFlowがPythonで使えるということだったので、とりいそぎ{PythonInR}で動かしてみました。TensorFlowがどういうものかについては、「参考」の項目に記載の記事などをご参照ください。

 「{PythonInR}って何?」という方のために簡単に説明すると、RからPythonを呼び出すパッケージです。

 下記のような使い方ができます。

TensorFlowのインストール

pip install https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl

 自分のMac環境だと下記の症状に直面してimportできませんでしたが、記事の通りに実行したところ無事に動作しました。

{PythonInR}で"Try your first TensorFlow program"を動かす

pyin-first-tensorflow.R
# Try your first TensorFlow program
# https://github.com/tensorflow/tensorflow

> library(PythonInR)
Initialize Python Version 2.7.10 (default, Aug 22 2015, 20:33:39) 
[GCC 4.2.1 Compatible Apple LLVM 7.0.0 (clang-700.0.59.1)]

# Python環境に複数混在しているときにインストールした先を直指定
# pip show tensorflow で確認可能
PythonInR::pyImport(import = "os")
PythonInR::pyExec(code = 'sys.path = ["/usr/local/lib/python2.7/site-packages/"] + sys.path')
# PythonInR::pyPrint(objName = "sys.path")

PythonInR::pyImport(import = "numpy")
PythonInR::pyImport(import = "tensorflow", as = "tf")


# Pythonコードを文字列として与えて実行
say_hello <- '
hello = tf.constant("Hello, TensorFlow!")
sess = tf.Session()
print sess.run(hello)
'
> PythonInR::pyExec(code = say_hello)
Hello, TensorFlow!

run_addition <- '
a = tf.constant(10)
b = tf.constant(32)
print sess.run(a+b)
'
> PythonInR::pyExec(code = run_addition)
42

> PythonInR::pyGet(key = "a")
Tensor("Const_1:0", shape=TensorShape([]), dtype=int32)

 無事に動作したようです。

『初心者用のMNISTチュートリアル』を試してみる

 下記の記事と同じことを、{PythonInR}でやってみます。

pyin-mnist-beginner.R
# 各種Pythonライブラリをimport
PythonInR::pyImport(import = "os")
PythonInR::pyImport(import = "gzip")
PythonInR::pyImport(import = "urllib")
PythonInR::pyImport(import = "numpy")

# 参照先の記事同様にinput_data.pyを用意しておく
# https://github.com/tensorflow/tensorflow/blob/db0b5da485e1d1f23003ee08ed2e191451ee0319/tensorflow/g3doc/tutorials/mnist/input_data.py
PythonInR::pyImport(import = "input_data")

# 上記同様にtensorflowをimport
PythonInR::pyImport(import = "os")
PythonInR::pyExec(code = 'sys.path = ["/usr/local/lib/python2.7/site-packages/"] + sys.path')
PythonInR::pyImport(import = "tensorflow", as = "tf")

# MNISTデータ読み込み
> PythonInR::pyExecp(code = 'mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)')
('Succesfully downloaded', 'train-images-idx3-ubyte.gz', 9912422, 'bytes.')
('Extracting', 'MNIST_data/train-images-idx3-ubyte.gz')
('Succesfully downloaded', 'train-labels-idx1-ubyte.gz', 28881, 'bytes.')
('Extracting', 'MNIST_data/train-labels-idx1-ubyte.gz')
('Succesfully downloaded', 't10k-images-idx3-ubyte.gz', 1648877, 'bytes.')
('Extracting', 'MNIST_data/t10k-images-idx3-ubyte.gz')
('Succesfully downloaded', 't10k-labels-idx1-ubyte.gz', 4542, 'bytes.')
('Extracting', 'MNIST_data/t10k-labels-idx1-ubyte.gz')

# モデル構築
## BEGIN.Python()で囲まれたコードはPythonとしてR上で処理
PythonInR::BEGIN.Python()
x = tf.placeholder("float", [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder("float", [None, 10])
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
END.Python

# xというPythonのオブジェクトが作成されている
> PythonInR::pyGet0(key = "x")
Tensor("Placeholder_2:0", shape=TensorShape([Dimension(None), Dimension(784)]), dtype=float32)

# トレーニングステップの定義
PythonInR::pyExecp(code = 'train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)')

# 初期化
init_session <- '
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
'
> PythonInR::pyExec(code = init_session)
I tensorflow/core/common_runtime/local_device.cc:25] Local device intra op parallelism threads: 4
I tensorflow/core/common_runtime/local_session.cc:45] Local session inter op parallelism threads: 4

# 学習
PythonInR::pyExec(code = '
for i in range(1000):
  batch_xs, batch_ys = mnist.train.next_batch(100)
  sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
')

# 結果表示
> PythonInR::pyExec(code = '
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})
')
0.9137

 問題なく動作しているようです。

Recurrent Neural Networksの例を試す(追記: 2015.11.12)

pyin-rnns-ptb.R
library(PythonInR)

# wget http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
## 上記のファイルを解凍して、ptb.train.txt, ptb.valid.txt, ptb.test.txtを用意

SET_PARAM <- list(
  # ptb.*.txtを解凍したディレクトリパス
  INPUT_PATH = "./"
)

# ライブラリのimport
PythonInR::pyImport(import = "time")
PythonInR::pyImport(import = "numpy", as = "np")

PythonInR::pyImport(import = "os")
PythonInR::pyExec(code = 'sys.path = ["/usr/local/lib/python2.7/site-packages/"] + sys.path')
PythonInR::pyImport(import = "tensorflow", as = "tf")

PythonInR::pyImport(import = "tensorflow.python.platform")
PythonInR::pyImport(from = "tensorflow.models.rnn", import = "rnn_cell")
PythonInR::pyImport(from = "tensorflow.models.rnn", import = "seq2seq")


# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/models/rnn/ptb/reader.py
## 上記のreader.pyを用意しておく
PythonInR::pyImport(import = "reader")

# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/models/rnn/ptb/ptb_word_lm.py
## 上記からPTBModelとSmall/Medium/Large/のConfigのクラス定義、run_epochとget_configの関数定義だけ使う
## importはPythonInR::pyImportで、定数定義とmainは下記で別途定義する
PythonInR::pyExecfile(filename = "ptb_word_lm_for_R.py")


# 入力データの設定をRからPythonオブジェクトへ
PythonInR::pySet(key = "data_path", value = SET_PARAM$INPUT_PATH)


# ptb_word_lm.py内にあった定数定義を行う
## 今回はmodelをsmallで
PythonInR::BEGIN.Python()
FLAGS = tf.flags.FLAGS
FLAGS.model = "small"
config = get_config()
eval_config = get_config()
eval_config.batch_size = 1
eval_config.num_steps = 1
END.Python
# PythonInR::pyGet(key = "FLAGS.model")

# ファイル読み込み
PythonInR::pyExecp(code = 'train_data, valid_data, test_data, _ = reader.ptb_raw_data(data_path)')


# 学習
run_training <- '
with tf.Graph().as_default(), tf.Session() as session:
  initializer = tf.random_uniform_initializer(-config.init_scale, config.init_scale)
  with tf.variable_scope("model", reuse=None, initializer=initializer):
    m = PTBModel(is_training=True, config=config)
  with tf.variable_scope("model", reuse=True, initializer=initializer):
    mvalid = PTBModel(is_training=False, config=config)
    mtest = PTBModel(is_training=False, config=eval_config)
  tf.initialize_all_variables().run()
  for i in range(config.max_max_epoch):
    lr_decay = config.lr_decay ** max(i - config.max_epoch, 0.0)
    m.assign_lr(session, config.learning_rate * lr_decay)
  
    print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
    train_perplexity = run_epoch(session, m, train_data, m.train_op, verbose=True)
    print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))
    valid_perplexity = run_epoch(session, mvalid, valid_data, tf.no_op())
    print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity))
    
  test_perplexity = run_epoch(session, mtest, test_data, tf.no_op())
  print("Test Perplexity: %.3f" % test_perplexity)
'
> PythonInR::pyExec(code = run_training)
I tensorflow/core/common_runtime/local_device.cc:25] Local device intra op parallelism threads: 4
I tensorflow/core/common_runtime/local_session.cc:45] Local session inter op parallelism threads: 4
Epoch: 1 Learning rate: 1.000
0.004 perplexity: 5281.647 speed: 416 wps
0.104 perplexity: 842.289 speed: 436 wps
0.204 perplexity: 625.980 speed: 436 wps
0.304 perplexity: 505.553 speed: 436 wps
0.404 perplexity: 436.171 speed: 436 wps
0.504 perplexity: 390.876 speed: 436 wps
0.604 perplexity: 352.165 speed: 436 wps
0.703 perplexity: 325.571 speed: 436 wps
0.803 perplexity: 304.489 speed: 436 wps
0.903 perplexity: 284.968 speed: 436 wps
Epoch: 1 Train Perplexity: 270.484
Epoch: 1 Valid Perplexity: 178.798
Epoch: 2 Learning rate: 1.000
0.004 perplexity: 211.812 speed: 435 wps
0.104 perplexity: 151.674 speed: 436 wps
0.204 perplexity: 159.031 speed: 437 wps
0.304 perplexity: 153.895 speed: 437 wps
0.404 perplexity: 150.939 speed: 436 wps
0.504 perplexity: 148.556 speed: 436 wps
0.604 perplexity: 143.708 speed: 436 wps
0.703 perplexity: 141.546 speed: 436 wps
0.803 perplexity: 139.509 speed: 436 wps
0.903 perplexity: 135.853 speed: 436 wps
Epoch: 2 Train Perplexity: 133.796
Epoch: 2 Valid Perplexity: 144.369
Epoch: 3 Learning rate: 1.000
0.004 perplexity: 144.571 speed: 435 wps
0.104 perplexity: 105.449 speed: 436 wps
0.204 perplexity: 114.526 speed: 436 wps
0.304 perplexity: 111.624 speed: 436 wps
0.404 perplexity: 110.695 speed: 436 wps
0.504 perplexity: 109.884 speed: 436 wps
0.604 perplexity: 107.141 speed: 436 wps
0.703 perplexity: 106.491 speed: 436 wps
0.803 perplexity: 105.827 speed: 436 wps
0.903 perplexity: 103.580 speed: 436 wps
Epoch: 3 Train Perplexity: 102.608
Epoch: 3 Valid Perplexity: 133.411
Epoch: 4 Learning rate: 1.000
0.004 perplexity: 116.489 speed: 434 wps
0.104 perplexity: 85.386 speed: 435 wps
0.204 perplexity: 93.969 speed: 436 wps
0.304 perplexity: 91.774 speed: 436 wps
0.404 perplexity: 91.300 speed: 436 wps
0.504 perplexity: 90.858 speed: 436 wps
0.604 perplexity: 88.896 speed: 436 wps
0.703 perplexity: 88.710 speed: 436 wps
0.803 perplexity: 88.441 speed: 436 wps
0.903 perplexity: 86.841 speed: 436 wps
Epoch: 4 Train Perplexity: 86.248
Epoch: 4 Valid Perplexity: 128.786
Epoch: 5 Learning rate: 1.000
0.004 perplexity: 99.743 speed: 434 wps
0.104 perplexity: 73.674 speed: 437 wps
0.204 perplexity: 81.126 speed: 437 wps
0.304 perplexity: 79.424 speed: 437 wps
0.404 perplexity: 79.306 speed: 437 wps
0.504 perplexity: 79.166 speed: 437 wps
0.604 perplexity: 77.693 speed: 437 wps
0.703 perplexity: 77.704 speed: 437 wps
0.803 perplexity: 77.674 speed: 437 wps
0.903 perplexity: 76.398 speed: 436 wps
Epoch: 5 Train Perplexity: 76.075
Epoch: 5 Valid Perplexity: 129.141
Epoch: 6 Learning rate: 0.500
0.004 perplexity: 89.435 speed: 433 wps
0.104 perplexity: 64.475 speed: 437 wps
0.204 perplexity: 69.678 speed: 437 wps
0.304 perplexity: 67.070 speed: 437 wps
0.404 perplexity: 66.096 speed: 437 wps
0.504 perplexity: 65.207 speed: 437 wps
0.604 perplexity: 63.308 speed: 437 wps
0.703 perplexity: 62.653 speed: 437 wps
0.803 perplexity: 61.950 speed: 437 wps
0.903 perplexity: 60.239 speed: 437 wps
Epoch: 6 Train Perplexity: 59.351
Epoch: 6 Valid Perplexity: 121.139
Epoch: 7 Learning rate: 0.250
0.004 perplexity: 73.172 speed: 434 wps
0.104 perplexity: 53.176 speed: 436 wps
0.204 perplexity: 57.739 speed: 437 wps
0.304 perplexity: 55.559 speed: 437 wps
0.404 perplexity: 54.689 speed: 437 wps
0.504 perplexity: 53.844 speed: 436 wps
0.604 perplexity: 52.164 speed: 436 wps
0.703 perplexity: 51.506 speed: 437 wps
0.803 perplexity: 50.789 speed: 437 wps
0.903 perplexity: 49.229 speed: 437 wps
Epoch: 7 Train Perplexity: 48.342
Epoch: 7 Valid Perplexity: 121.124
Epoch: 8 Learning rate: 0.125
0.004 perplexity: 65.315 speed: 434 wps
0.104 perplexity: 47.156 speed: 437 wps
0.204 perplexity: 51.336 speed: 437 wps
0.304 perplexity: 49.347 speed: 437 wps
0.404 perplexity: 48.533 speed: 437 wps
0.504 perplexity: 47.753 speed: 437 wps
0.604 perplexity: 46.210 speed: 437 wps
0.703 perplexity: 45.589 speed: 437 wps
0.803 perplexity: 44.906 speed: 437 wps
0.903 perplexity: 43.472 speed: 437 wps
Epoch: 8 Train Perplexity: 42.625
Epoch: 8 Valid Perplexity: 122.176
Epoch: 9 Learning rate: 0.062
0.004 perplexity: 60.844 speed: 433 wps
0.104 perplexity: 44.074 speed: 436 wps
0.204 perplexity: 48.118 speed: 436 wps
0.304 perplexity: 46.220 speed: 436 wps
0.404 perplexity: 45.445 speed: 437 wps
0.504 perplexity: 44.698 speed: 436 wps
0.604 perplexity: 43.224 speed: 437 wps
0.703 perplexity: 42.619 speed: 437 wps
0.803 perplexity: 41.953 speed: 437 wps
0.903 perplexity: 40.583 speed: 437 wps
Epoch: 9 Train Perplexity: 39.766
Epoch: 9 Valid Perplexity: 122.860
Epoch: 10 Learning rate: 0.031
0.004 perplexity: 58.749 speed: 434 wps
0.104 perplexity: 42.488 speed: 436 wps
0.204 perplexity: 46.469 speed: 437 wps
0.304 perplexity: 44.619 speed: 437 wps
0.404 perplexity: 43.874 speed: 437 wps
0.504 perplexity: 43.140 speed: 437 wps
0.604 perplexity: 41.703 speed: 437 wps
0.703 perplexity: 41.105 speed: 437 wps
0.803 perplexity: 40.445 speed: 437 wps
0.903 perplexity: 39.105 speed: 437 wps
Epoch: 10 Train Perplexity: 38.298
Epoch: 10 Valid Perplexity: 123.096
Epoch: 11 Learning rate: 0.016
0.004 perplexity: 57.550 speed: 435 wps
0.104 perplexity: 41.623 speed: 436 wps
0.204 perplexity: 45.553 speed: 437 wps
0.304 perplexity: 43.723 speed: 437 wps
0.404 perplexity: 42.996 speed: 437 wps
0.504 perplexity: 42.278 speed: 437 wps
0.604 perplexity: 40.870 speed: 437 wps
0.703 perplexity: 40.274 speed: 437 wps
0.803 perplexity: 39.617 speed: 437 wps
0.903 perplexity: 38.294 speed: 437 wps
Epoch: 11 Train Perplexity: 37.492
Epoch: 11 Valid Perplexity: 122.920
Epoch: 12 Learning rate: 0.008
0.004 perplexity: 56.783 speed: 435 wps
0.104 perplexity: 41.115 speed: 437 wps
0.204 perplexity: 45.020 speed: 437 wps
0.304 perplexity: 43.202 speed: 437 wps
0.404 perplexity: 42.484 speed: 437 wps
0.504 perplexity: 41.777 speed: 437 wps
0.604 perplexity: 40.389 speed: 437 wps
0.703 perplexity: 39.797 speed: 437 wps
0.803 perplexity: 39.146 speed: 437 wps
0.903 perplexity: 37.834 speed: 437 wps
Epoch: 12 Train Perplexity: 37.036
Epoch: 12 Valid Perplexity: 122.650
Epoch: 13 Learning rate: 0.004
0.004 perplexity: 56.278 speed: 434 wps
0.104 perplexity: 40.812 speed: 436 wps
0.204 perplexity: 44.704 speed: 436 wps
0.304 perplexity: 42.901 speed: 436 wps
0.404 perplexity: 42.193 speed: 436 wps
0.504 perplexity: 41.494 speed: 437 wps
0.604 perplexity: 40.117 speed: 437 wps
0.703 perplexity: 39.530 speed: 437 wps
0.803 perplexity: 38.883 speed: 437 wps
0.903 perplexity: 37.578 speed: 437 wps
Epoch: 13 Train Perplexity: 36.784
Epoch: 13 Valid Perplexity: 122.449
Test Perplexity: 117.094

 今回使用した"small"のモデルでは、テストセットのperplexityが120を下回るくらいになると記載があったので("large"だと80)、どうやら動作しているようです。

追記(2016.01.03)

 RStudio社から{tensorflow}というパッケージが公開され、TensorFlow以外にPythonのライブラリも活用できるので、今後はこちらを使っていくといいと思います。

実行環境

> devtools::session_info()
Session info ------------------------------------------------------------------------------------
 setting  value                       
 version  R version 3.2.2 (2015-08-14)
 system   x86_64, darwin13.4.0        
 ui       RStudio (0.99.486)          
 language (EN)                        
 collate  ja_JP.UTF-8                 
 tz       Asia/Tokyo                  

Packages ----------------------------------------------------------------------------------------
 package   * version date       source                        
 curl        0.9     2015-06-19 CRAN (R 3.2.0)                
 devtools    1.8.0   2015-05-09 CRAN (R 3.2.0)                
 digest      0.6.8   2014-12-31 CRAN (R 3.2.0)                
 git2r       0.10.1  2015-05-07 CRAN (R 3.2.0)                
 memoise     0.2.1   2014-04-22 CRAN (R 3.2.0)                
 pack        0.1-1   2015-04-21 local                         
 PythonInR * 0.1-1   2015-09-19 CRAN (R 3.2.0)                
 R6          2.1.1   2015-08-19 CRAN (R 3.2.0)                
 Rcpp        0.12.0  2015-07-26 Github (RcppCore/Rcpp@6ae91cc)
 rversions   1.0.1   2015-06-06 CRAN (R 3.2.0)                
 xml2        0.1.1   2015-06-02 CRAN (R 3.2.0)     

参考

33
34
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
33
34

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?