0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

MokkosuでHaskellの型システムを作る (その4)

Posted at

はじめに

Simon Peyton Jones 論文 Typing Haskell in Haskell を参考に Haskell の型システムの実装に挑戦しています。実装には関数型言語の Mokkosu を使っています。

型推論

type Literal = LitInt(Int)
             | LitChar(Char)
             | LitRat(Double)
             | LitStr(String)
;

let ti_lit = {
  ~LitChar(_) -> ([], t_char);
  ~LitInt(_) ->
    let v = new_tvar Star in
    ([IsIn(Id "Num", v)], v);
  ~LitStr(_) -> ([], t_string);
  ~LitRat(_) ->
    let v = new_tvar Star in
    ([IsIn(Id "Fractional", v)], v)
};

type Pat = PVar(Id)
         | PWildcard
         | PAs(Id, Pat)
         | PLit(Literal)
         | PNpk(Id, Int)
         | PCon(Assump, [Pat]);

fun ti_pat = {
  ~PVar(i) ->
    let v = new_tvar Star in
    ([], [Assump(i, to_scheme v)], v);
  ~PWildcard ->
    let v = new_tvar Star in
    ([], [], v);
  ~PAs(i, p) ->
    let (ps, a, t) = ti_pat p in
    (ps, Assump(i, to_scheme t) :: a, t);
  ~PLit(l) ->
    let (ps, t) = ti_lit l in
    (ps, [], t);
  ~PNpk(i,k) ->
    let t = new_tvar Star in
    ([IsIn(Id "Integral", t)], [Assump(i, to_scheme t)], t);
  ~PCon(~Assump(i, sc), pats) ->
    let (ps, a, ts) = ti_pats pats in
    let t2 = new_tvar Star in
    let ~Qual(qs,t) = fresh_inst sc in
    do unify t (foldr fn t2 ts) in
    (ps ++ qs, a, t2)
}
and ti_pats pats =
  let psasts = map ti_pat pats in
  let ps = concat (for (qs2, _, _) <- psasts in qs2) in
  let a  = concat (for (_, a2, _)  <- psasts in a2 ) in
  let ts = for (_, _, t) <- psasts in t in
  (ps, a, ts)
;

type Expr = Var(Id)
          | Lit(Literal)
          | Const(Assump)
          | Ap(Expr, Expr)
          | Let(BindGroup, Expr)

and Alt = Alt([Pat], Expr)

and Impl = Impl(Id, [Alt])

and BindGroup = BindGroup([Expl], [[Impl]])

and Ambiguity = Ambiguity(Tyvar, [Pred])

and Expl = Expl(Id, Scheme, [Alt]);

fun diff_pred_list ps1 ps2 =
  match ps1 {
    [] -> [];
    p :: ps ->
      if mem_pred_list p ps2 ->
        diff_pred_list ps ps2
      else
        p :: diff_pred_list ps ps2
  };

fun diff_tyvar_list tvs1 tvs2 =
  match tvs1 {
    [] -> [];
    tv :: tvs ->
      if mem_tyvar_list tv tvs2 ->
        diff_tyvar_list tvs tvs2
      else
        tv :: diff_tyvar_list tvs tvs2
  };

let num_classes = [
  Id "Num", Id "Integral", Id "Floating", Id "Fractional",
  Id "Real", Id "RealFloat", Id "RealFrac"
];

let std_classes = [
  Id "Eq", Id "Ord", Id "Show", Id "Read", Id "Bounded", Id "Enum",
  Id "Ix", Id "Functor", Id "Monad", Id "MonadPlus"
] ++ num_classes;

let apply_assump_list s =
  map (apply_assump s);

let tv_assump_list a =
  nub_tyvar_list <| concat_map tv_assump a;

let foldl1 f lis = foldl f (head lis) (tail lis);

fun ti_expr ce a = {
  ~Var(i) ->
    let sc = find i a in
    let ~Qual(ps,t) = fresh_inst sc in
    (ps, t);
  ~Const(~Assump(i,sc)) ->
    let ~Qual(ps,t) = fresh_inst sc in
    (ps, t);
  ~Lit(l) ->
    ti_lit l;
  ~Ap(e,f) ->
    let (ps, te) = ti_expr ce a e in
    let (qs, tf) = ti_expr ce a f in
    let t = new_tvar Star in
    do unify (tf `fn` t) te in
    (ps ++ qs, t);
  ~Let(bg,e) ->
    let (ps, a2) = ti_bind_group ce a bg in
    let (qs, t) = ti_expr ce (a2 ++ a) e in
    (ps ++ qs, t)
}

and ti_alt ce a ~Alt(pats,e) =
  let (ps,a2,ts) = ti_pats pats in
  let (qs,t) = ti_expr ce (a2 ++ a) e in
  (ps ++ qs, foldl fn t ts)

and ti_alts ce a alts t =
  let psts = map (ti_alt ce a) alts in
  do iter (unify t) (map snd psts) in
  concat (map fst psts)

and split ce fs gs ps =
  let ps2 = reduce ce ps in
  let (ds, rs) = partition (all (flip elem fs) << tv_pred) ps2 in
  let rs2 = defaulted_preds ce (fs ++ gs) rs in
  (ds, diff_pred_list rs rs2)

and ambiguities ce vs ps =
  for v <- tv_pred_list ps `diff_tyvar_list` vs in
    Ambiguity (v, filter (elem v << tv_pred) ps)

and candidates ce ~Ambiguity(v, qs) =
  let is = for ~IsIn(i,t) <- qs in i in
  let ts = for ~IsIn(i,t) <- qs in t in
  for if all (type_equal (TVar v)) ts;
      if any (flip elem num_classes) is;
      if all (flip elem std_classes) is;
      t2 <- defaults ce;
      if all (entail ce []) (for i <- is in IsIn(i,t2))
  in t2

and with_defaults f ce vs ps =
  let vps = ambiguities ce vs ps in
  let tss = map (candidates ce) vps in
  if any is_nil tss -> error "cannot resolve ambiguity"
  else f vps (map head tss)

and defaulted_preds ce =
  with_defaults (\vps ts -> concat_map (\~Ambiguity(_,x) -> x) vps) ce

and with_defaults2 f ce vs ps =
  let vps = ambiguities ce vs ps in
  let tss = map (candidates ce) vps in
  if any is_nil tss -> error "cannot resolve ambiguity"
  else f vps (map head tss)

and default_subst ce tvs ps =
  with_defaults2 (\vps ts -> zip (map (\~Ambiguity(x,_) -> x) vps) ts)
    ce tvs ps |> Subst

and ti_expl ce a ~Expl(i,sc,alts) =
  let ~Qual(qs,t) = fresh_inst sc in
  let ps = ti_alts ce a alts t in
  let s = get_subst () in
  let qs2 = apply_pred_list s qs in
  let t2 = apply_type s t in
  let fs = tv_assump_list (apply_assump_list s a) in
  let gs = tv_type t2 `diff_tyvar_list` fs in
  let sc2 = quantify gs (Qual (qs2, t2)) in
  let ps2 = filter (not << entail ce qs2) (apply_pred_list s ps) in
  let (ds, rs) = split ce fs gs ps2 in
  if not (scheme_equal sc sc2) ->
    error "signature too general"
  else if not (is_nil rs) ->
    error "context too weak"
  else
    ds

and restricted bs =
  let simple ~Impl(i,alts) = any (\~Alt(x,_) -> is_nil x) alts in
  any simple bs

and ti_impls ce a bs =
  let ts = map (\_ -> new_tvar Star) bs in
  let is = map (\~Impl(x,_) -> x) bs in
  let scs = map to_scheme ts in
  let a2 = zip_with (curry Assump) is scs ++ a in
  let altss = map (\~Impl(_,y) -> y) bs in
  let pss = zip_with (ti_alts ce a2) altss ts in
  let s = get_subst () in
  let ps2 = apply_pred_list s (concat pss) in
  let ts2 = apply_type_list s ts in
  let fs = tv_assump_list (apply_assump_list s a) in
  let vss = map tv_type ts2 in
  let gs = foldl1 union_tyvar_list vss `diff_tyvar_list` fs in
  let (ds,rs) = split ce fs (foldl1 intersect_tyvar_list vss) ps2 in
  if restricted bs ->
    let gs2 = gs `diff_tyvar_list` tv_pred_list rs in
    let scs2 = map (\x -> quantify gs2 (Qual([], x))) ts2 in
    (ds ++ rs, zip_with (curry Assump) is scs2)
  else
    let scs2 = map (\x -> quantify gs (Qual (rs, x))) ts2 in
    (ds, zip_with (curry Assump) is scs2)

and ti_bind_group ce a ~BindGroup(es,iss) =
  let a2 = for ~Expl(v,sc,alts) <- es in Assump(v,sc) in
  let (ps, a3) = ti_seq ti_impls ce (a2 ++ a) iss in
  let qss = map (ti_expl ce (a3 ++ a2 ++ a)) es in
  (ps ++ concat qss, a3 ++ a2)

and ti_seq ti ce a = {
  [] -> ([], []);
  bs :: bss ->
    let (ps, a2) = ti ce a bs in
    let (qs, a3) = ti_seq ti ce (a2 ++ a) bss in
    (ps ++ qs, a3 ++ a2)
}

and ti_seq2 ti ce a = {
  [] -> ([], []);
  bs :: bss ->
    let (ps, a2) = ti ce a bs in
    let (qs, a3) = ti_seq2 ti ce (a2 ++ a) bss in
    (ps ++ qs, a3 ++ a2)
};


type Program = Program([BindGroup]);

let ti_program ce (a : [Assump]) ~Program(bgs) =
  do init_state () in
  let (ps, a2) = ti_seq2 ti_bind_group ce a bgs in
  let s = get_subst () in
  let rs = reduce ce (apply_pred_list s ps) in
  let s2 = default_subst ce [] rs in
  apply_assump_list (s2 `append_subst` s) a2;

ここまでの感想

  • プログラムは作り終えた。型も通った。意味は分かっていない。
  • 次回は何かサンプルプログラム的なものを動かしてみたいと思う。
  • 論文には実行例は載っていないので自力で作る必要がある。

つづく

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?