1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

MokkosuでHaskellの型システムを作る (その3)

Posted at

はじめに

Simon Peyton Jones 論文 Typing Haskell in Haskell を参考に Haskell の型システムの実装に挑戦しています。実装には関数型言語の Mokkosu を使っています。

型クラス (続き)

fun by_super ce (~IsIn(i,t) as p) =
  p :: concat (for i2 <- super ce i in by_super ce (IsIn(i2,t)));

let mplus_maybe m1 m2 =
  match (m1, m2) {
    (~Nothing, ~Nothing) -> Nothing;
    (~Just(x), ~Nothing) -> Just(x);
    (~Nothing, ~Just(x)) -> Just(x);   
    (~Just(x), ~Just(_)) -> Just(x);
  };

fun msum_maybe = {
  [] -> Nothing;
  x :: xs -> x `mplus_maybe` msum_maybe xs
};

let by_inst ce (~IsIn(i,t) as p) =
  let try_inst ~Qual(ps,h) =
    match (match_pred h p) {
      ~Nothing -> Nothing;
      ~Just(u) ->
        Just (map (apply_pred u) ps)
    }
  in
  msum_maybe (for ~Inst(it) <- insts ce i in try_inst it);

fun mem_pred_list p lis =
  match lis {
    [] -> false;
    p1 :: rest -> pred_equal p p1 && mem_pred_list p rest
  };

fun entail ce ps p =
  any (mem_pred_list p) (map (by_super ce) ps) ||
  (match (by_inst ce p) {
     ~Nothing -> false;
     ~Just(qs) -> all (entail ce ps) qs
   });

let in_hnf ~IsIn(_,t) =
  fun hnf = {
    ~TVar(v) -> true;
    ~TCon(tc) -> false;
    ~TAp(t,_) -> hnf t
  } in hnf t;

fun to_hnfs ce ps =
  concat (map (to_hnf ce) ps)

and to_hnf ce p =
  if in_hnf p -> [p]
  else
    match (by_inst ce p) {
      ~Nothing -> error "context resuction";
      ~Just(ps) -> to_hnfs ce ps   
    };

let simplify ce =
  fun loop rs = {
    [] -> rs;
    p :: ps ? entail ce (rs ++ ps) p -> loop rs ps;
    p :: ps -> loop (p :: rs) ps
  }
  in loop [];

let reduce ce ps =
  simplify ce <| to_hnfs ce ps;

let sc_entail ce ps p =
  any (mem_pred_list p) (map (by_super ce) ps);

#------------------------------
# 8. Type Schemes
#------------------------------

type Scheme = Forall ([Kind], Qual<Type>);

let kind_list_equal ks1 ks2 =
  all (uncurry kind_equal) (zip ks1 ks2);

let scheme_euqal sc1 sc2 =
  match (sc1, sc2) {
    (~Forall(ks1,q1), ~Forall(ks2,q2)) ->
      kind_list_equal ks1 ks2 && qual_equal_type q1 q2 
  };

let apply_scheme s ~Forall(ks,qt) =
  Forall(ks, apply_qual_type s qt);

let tv_scheme ~Forall(ks,qt) = tv_qual_type qt;

let quantify vs qt =
  let vs2 = for v <- tv_qual_type qt;
                if mem_tyvar_list v vs in v
  in
  let ks = map kind_tyvar vs2 in
  let s = Subst (zip vs2 (map TGen (0 .. length vs2))) in
  Forall (ks, apply_qual_type s qt);

let to_scheme t =
  Forall([], Qual([], t));

仮定

type Assump = Assump(Id, Scheme);

let apply_assump s ~Assump(i,sc) =
  Assump(i, apply_scheme s sc);

let tv_assump ~Assump(i,sc) = tv_scheme sc;

fun find (~Id(s) as i) = {
  [] -> error <| "unbound identifier: " ^ s;
  ~Assump(i2, sc) :: rest ->
    if id_equal i i2 -> sc
    else find i rest
};

型推論の状態

let subst = ref null_subst;
let count = ref 0;

let get_subst () = !subst;

let ext_subst s2 =
  subst := s2 `append_subst` !subst;

let unify t1 t2 =
  let s = get_subst () in
  let u = mgu (apply_type s t1) (apply_type s t2) in
  ext_subst u;

let new_tvar k =
  let n = !count in
  do incr count in
  TVar (Tyvar (enum_id n, k));

fun inst_type ts = {
  ~TAp(l,r) -> TAp(inst_type ts l, inst_type ts r);
  ~TGen(n) -> nth ts n;
  t -> t
};

let inst_pred ts ~IsIn(c,t) =
  IsIn(c, inst_type ts t);
  
let inst_pred_list ts ps =
  map (inst_pred ts) ps;
  
let inst_qual ts ~Qual(ps,t) =
  Qual(inst_pred_list ts ps, inst_type ts t);


let fresh_inst ~Forall(ks,qt) =
  let ts = map new_tvar ks in
  inst_qual ts qt;

ここまでの感想

  • もはや何のプログラムを書いているのか自分でも理解していない。

つづく

1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?